

Conducell UPW Arc Sensors

Modbus RTU Programmer's Manual

Firmware version: CPWUM033

Important Notice

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form without written permission from Hamilton Bonaduz AG.

The contents of this manual are subject to change without notice. Technical changes reserved.

All efforts have been made to ensure the accuracy of the contents of this manual. However, should any errors be detected, Hamilton Bonaduz AG would greatly appreciate being informed of them.

The above notwithstanding, Hamilton Bonaduz AG can assume no responsibility for any errors in this manual or their consequences.

Copyright © 2021 Hamilton Bonaduz AG, Switzerland.

Rev.	Revision Date	Author	Change Description
00	06.12.2011	JB	Initial Version 00 for CPWUM013
		DS	
01	13.08.2012	JB	Update to Version CPWUM014
02	07.07.2020	CS	Update to Version CPWUM031
03	22.02.2021	CS	Update to Version CPWUM033

Table of Content

1	MODBUS	S RTU GENERAL INFORMATION	5
	1.1 INTR	ODUCTION	5
		ILTON ARC SENSORS: MODBUS COMMAND STRUCTURE	
	1.2.1	Modbus RTU: Definitions According to Modbus IDA	
	1.2.2	Command Structure	
	1.2.3	Modbus RTU Transmission Mode	6
	1.2.4	Modbus RTU Message Framing	
	1.2.5	Modbus RTU CRC Checking	
	1.3 IMPL	EMENTATION OF MODBUS RTU IN HAMILTON ARC SENSORS	9
	1.4 Mod	BUS RTU FUNCTION CODES USED FOR ARC SENSORS	
	1.4.1	Modbus function code #3: Read Holding Registers	9
	1.4.2	Modbus function code #4: Read Input Registers	
	1.4.3	Modbus Function Code #16: Write Multiple Registers	11
	1.5 DAT	A FORMATS USED IN ARC SENSORS	12
	1.5.1	Float	
	1.5.2	Character	
	1.5.3	Decimal	
	1.6 Mod	BUS RTU ERROR MESSAGES	14
2	CONDUC	ELL UPW ARC SENSOR COMMANDS IN MODBUS RTU	15
-			
		ERAL	
		RATOR LEVELS AND PASSWORDS	
	2.2.1	Reading / Setting Operator Level	
	2.2.2	Changing Passwords for Operator Level	
		FIGURATION OF THE SERIAL RS485 INTERFACE	
	2.3.1	Device Address	
	2.3.2	Baud Rate	
		FIGURATION OF THE ANALOG INTERFACES	
	2.4.1	Available Analog Interfaces and Digtal IO	
	2.4.2	Available Analog Interface Modes	
	2.4.3	Description of the Analog Interfaces 1 and 2	
	2.4.4	Selection of an Analog Interface Mode	
	2.4.5 2.4.6	Configuration of the Analog Interface	
		Reading the Internally Measured Output Current	21 20
	2.5 CON	Available Digital IO	
	2.5.1	Digital Interface Parameters	
	2.5.2	Description of the Digital IO 1 and 2	
	2.5.3	Selection of the Available PMC	
	2.5.4	Available Modes	
	2.5.6	Selection of a Digital IO Mode	
		SUREMENT	
	2.6.1	Definition of Measurement Channels and Physical Units	
	2.6.2	Primary Measurement Channel 1 (Conductivity)	
	2.6.3	Primary Measurement Channel 6 (Temperature)	
	2.6.4	Definition of the Measurement Status for PMC1 / PMC6	
	2.6.5	Secondary Measurement Channels 1-16	
		FIGURATION OF THE MEASUREMENT	
	2.7.1	Available Parameters	
	2.7.2	PA3: Temperature Compensation Reference Temperature	
	2.7.3	PA4: Temperature Compensation Factor	
	2.7.4	PA9: Moving Average	
	2.7.5	PA10: USP Function	
		BRATION	
	2.8.1	Available Calibration Points	
	2.8.2	Definitions of Calibration Points	
	2.8.3	Calibration Procedure	

2.8.4	Reading the Calibration Status	63
2.8.5	Currently active Calibration Parameters part 1	67
2.8.6	Currently active Calibration Parameters part 2	
2.8.7	Currently active Calibration Parameters part 3	68
2.8.8	Currently active Calibration Parameters part 4	69
2.8.9	Currently active Calibration Parameters part 5	
2.8.10	Special Commands for Calibration with VISICAL	71
2.8.11	Calibration Standards	
2.9 SEN	SOR STATUS	78
2.9.1	Temperature Ranges	78
2.9.2	Operating Hours, Counters and System Time	
2.9.3	Warnings	81
2.9.4	Errors	
2.9.5	Reading Definition of SIP and CIP	84
2.9.6	Reading the Sensor's Quality Indicator	
2.10 SEN	SOR IDENTIFICATION AND INFORMATION	
2.10.1	General Information	
2.10.2	Sensor Identification	86
2.10.3	Free User Memory Space	87
2.11 Sys	TEM COMMANDS	
2.11.1	Recall Sensor's Factory Settings	88
ABBREV		88

3

1 Modbus RTU general information

1.1 Introduction

This document describes in detail the Conducell UPW Arc Sensors Modbus RTU interface. It is addressed to software programmers.

Chapter 1 is a general description of the Modbus RTU.

The following chapters contain the Conducell UPW Arc Sensors specific programming.

1.2 Hamilton Arc Sensors: Modbus Command Structure

This definition of the command structure is valid for all members of the Hamilton Arc Sensor family, having the following firmware versions:

- ODOUM0xx (VisiFerm DO / VisiFerm DO Arc Sensor)
- EPHUM0xx (pH Arc Sensors)
- CONUM0xx (Conducell Arc Sensors)
- CPWUM0xx (Conducell PW Arc Sensors)
- EDOUM0xx (EDO Arc Sensors)
- ERXUM0xx (ORP Arc Sensors)

Please check by reading register 1032 (see chapter 2.10.1):

This definition of the command structure is an additional document to the Operating Instructions of the specific sensors. Before reading this manual, the operating instructions of the sensors should be read and understood.

1.2.1 Modbus RTU: Definitions According to Modbus IDA

The definitions in chapter 1.2 are an excerpt from the document:

- "Modbus over serial line Specification and Implementation Guide V1.02" and
- "Modbus Application Protocol Specification V1.1b"

For more detailed information please consult http://www.modbus.org.

Attention:

- In this manual the register counting starts per definition at address 1. Some Modbus master protocols operate with register-count starting at address 0. Usually, the Modbus master software translates the addressing. Thus, the register address of 2088 will be translated by Modbus master software to 2087 which is sent to the sensor (Modbus slave). This must be observed during programming. Please check the specifications of the Modbus master that you are using.
- Representation of data formats in this document:
 - decimal values are displayed as numbers without any prefix, for example 256
 - hexadecimal values are displayed as: 0x2A
 - ASCII-characters or ASCII strings are displayed as: "Text"

1.2.2 Command Structure

The Modbus application protocol defines a simple **P**rotocol **D**ata **U**nit (PDU) independent of the underlying communication layers:

MODBUS PDU

Figure 1.2.2.1: Modbus Protocol Data Unit.

The mapping of Modbus protocol on a specific bus or network introduces some additional fields on the **P**rotocol **D**ata **U**nit. The client that initiates a Modbus transaction builds the Modbus PDU, and then adds fields in order to build the appropriate communication PDU.

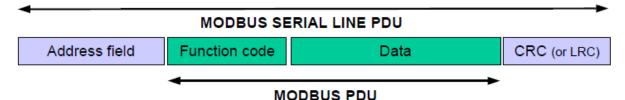


Figure 1.2.2.2: Modbus frame over Serial Line.

• On Modbus Serial Line, the Address field only contains the slave address.

Note:

Arc Sensors support only slave addresses 1 to 32.

A master addresses a slave by placing the slave address in the address field of the message. When the slave returns its response, it places its own address in the response address field to let the master know which slave is responding.

- The function code indicates to the server what kind of action to perform. The function code can be followed by a data field that contains request and response parameters.
- The CRC field is the result of a "Redundancy Checking" calculation that is performed on the message contents.

1.2.3 Modbus RTU Transmission Mode

When devices communicate on a Modbus serial line using the RTU (Remote Terminal Unit) mode, each 8-bit byte in a message contains two 4-bit hexadecimal characters. The main advantage of this mode is that its greater character density allows better data throughput than ASCII mode for the same baud rate. Each message <u>must</u> be transmitted in a continuous stream of characters.

The format (11bits) for each byte in RTU mode is:

Coding System:	8 bit binary
Bits per Byte:	1 start bit
	8 data bits, least significant bit sent first 1 bit for parity completion 1 stop bit

Remark: The use of no parity requires 2 stop bits.

How characters are transmitted serially:

Each character or byte is sent in this order (left to right): Least Significant Bit (LSB)...Most Significant Bit (MSB)

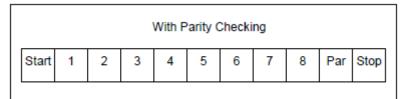


Figure 1.2.3.1: Bit sequence in RTU mode.

Frame Checking Field:

Cyclical Redundancy Checking (CRC)

Frame description:

Slave Address	Function Code	Data	CRC
1 byte	1 byte	0 up to 252 byte(s)	2 bytes CRC Low CRC Hi

Figure 1.2.3.2: RTU Message Frame.

=> The maximum size of a Modbus RTU frame is 256 bytes.

1.2.4 Modbus RTU Message Framing

A Modbus message is placed by the transmitting device into a frame that has a known beginning and ending point. This allows devices that receive a new frame to begin at the start of the message, and to know when the message is completed. Partial messages <u>must</u> be detected and errors <u>must</u> be set as a result.

In RTU mode, message frames are separated by a silent interval of <u>at least</u> 3.5 character times.

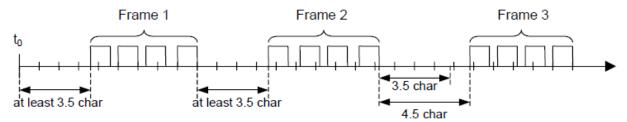


Figure 1.2.4.1: Valid frames with silent intervals.

MODBUS message							
	Start		Address	Function	Data	CRC Check	End
	≥ 3.5 char		8 bits	8 bits	N x 8 bits	16 bits	≥ 3.5 char

Figure 1.2.4.2: RTU Message Frame.

The entire message frame <u>must</u> be transmitted as a continuous stream of characters.

If a silent interval of more than 1.5 character times occurs between two characters, the message frame is declared incomplete and should be discarded by the receiver.

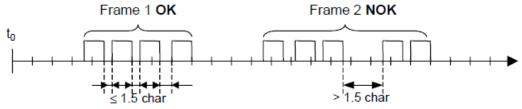


Figure 1.2.4.3: Data transmission of a frame.

1.2.5 Modbus RTU CRC Checking

The RTU mode includes an error-checking field that is based on a Cyclical Redundancy Checking (CRC) method performed on the message contents.

The CRC field checks the contents of the entire message. It is applied regardless of any parity checking method used for the individual characters of the message.

The CRC field contains a 16-bit value implemented as two 8-bit bytes.

The CRC field is appended to the message as the last field in the message. When this is done, the loworder byte of the field is appended first, followed by the high-order byte. The CRC high-order byte is the last byte to be sent in the message.

The CRC value is calculated by the sending device, which appends the CRC to the message. The receiving device recalculates a CRC during receipt of the message, and compares the calculated value to the current value it received in the CRC field. If the two values are not equal, an error results.

The CRC calculation is started by first pre-loading a 16-bit register to all 1's. Then a process begins of applying successive 8-bit bytes of the message to the current contents or the register. Only the eight bits of data in each character are used for generating the CRC. Start and stop bits and the parity bit do not apply to the CRC.

During generation of the CRC, each 8-bit character is exclusive OR-ed with the register contents. Then the result is shifted in the direction of the least significant bit (LSB), with a zero filled into the most significant bit (MSB) position. The LSB is extracted and examined. If the LSB was a 1, the register is then exclusive OR-ed with a preset, fixed value. If the LSB was a 0, no exclusive OR takes place.

This process is repeated until eight shifts have been performed. After the last (eight) shift, the next 8-bit byte is exclusive OR-ed with the register's current value, and the process repeats for eight more shifts as described above. The final content of the register, after all the bytes of the message have been applied, is the CRC value.

When the CRC is appended to the message, the low-order byte is appended first, followed by the highorder byte.

A detailed introduction to CRC generation can be found in the manual "MODBUS over Serial Line, Specification and Implementation Guide, V1.02" in chapter 6.2 "Appendix B - LRC/CRC Generation" form <u>http://www.modbus.org</u>.

1.3 Implementation of Modbus RTU in Hamilton Arc Sensors

According to the official Modbus definition, the start of a command is initiated with a pause of ≥ 3.5 characters. Also the end of a command is indicated with a pause of ≥ 3.5 char.

The device address and the Modbus function code have 8 bits.

The data string consists of n*8 bits. The data string contains the starting address of the register and the number of registers to read/write.

The checksum CRC is 16 bits long.

	start	device address	function	data	Checksum		end
value	no signal during ≥ 3.5 char	1-32	function code according to Modbus specs	data according to Modbus specs	CRC L	CRC H	No signal during ≥ 3.5 char
bytes	≥ 3.5	1	1	n	1	1	≥ 3.5

Figure 1.3.1: Modbus definition for data transmission.

The RS485 interface is configured as follows:

Modbus RTU implementation in Hamilton Arc Sensors
1
8
none
2
11 Bits
19200 (default), other baud rate can be configured

Figure 1.3.2: RS485 definitions for Arc Sensors.

1.4 Modbus RTU Function Codes Used for Arc Sensors

Arc Sensors use only 3 Modbus function codes:

- # 3: Read Holding Registers
- # 4: Read Input Registers
- # 16: Write Multiple Registers

These three function codes are described below in detail using excerpts from "Modbus Application Protocol Specification V1.1b "(<u>http://www.modbus.org</u>).

1.4.1 Modbus function code #3: Read Holding Registers

This function code is used to read the contents of a contiguous block of holding registers in a remote device. The Request PDU specifies the starting register address and the number or registers. The PDU Registers are addressed starting at zero. Therefore registers numbered 1 - 16 are addressed as 0 - 15.

The register data in the response message are packed as two bytes per register. For each register, the first byte contains the high order bits and the second contains the low order bits.

|--|

Function code	1 Byte	0x03
Starting Address	2 Bytes	0x0000 to 0xFFFF
Quantity of Registers	2 Bytes	1 to 125 (0x7D)

Response

Byte count 1 Byte	e 2 x N*
Register value N* x 2	2 Bytes

*N = Quantity of Registers

Error

Error code	1 Byte	0x83
Exception code	1 Byte	01 or 02 or 03 or 04

Figure 1.4.1.1: Definition of Holding Registers.

Request		Response		
Field Name	(Hex)	Field Name	(Hex)	
Function	03	Function	03	
Starting Address Hi	00	Byte Count	06	
Starting Address Lo	6B	Register value Hi (108)	02	
No. of Registers Hi	00	Register value Lo (108)	2B	
No. of Registers Lo	03	Register value Hi (109)	00	
		Register value Lo (109)	00	
		Register value Hi (110)	00	
		Register value Lo (110)	64	

Figure 1.4.1.2: Example of reading holding registers 108 – 110. The contents of register 108 are read as the two byte values 0x022B. The contents of registers 109 – 110 are 0x00 00 and 0x0064.

1.4.2 Modbus function code #4: Read Input Registers

The function code is used to read from 1 to 125 contiguous input registers in a remote device. The Request PDU specifies the starting register address and the number of registers. The PDU Registers are addressed starting at zero. Therefore input registers numbered 1 - 16 are addressed as 0 - 15.

The register data in the response message are packed as two bytes per register. For each register, the first byte contains the high order bits and the second contains the low order bits.

Request

Function code	1 Byte	0x04
Starting Address	2 Bytes	0x0000 to 0xFFFF
Quantity of Input Registers	2 Bytes	0x0001 to 0x007D

Response

Function code	1 Byte	0x04
Byte count	1 Byte	2 x N*
Input Registers	N* x 2 Bytes	
411 0 22 21 2 0		

*N = Quantity of Input Registers

Error

Error code	1 Byte	0x84
Exception code	1 Byte	01 or 02 or 03 or 04

Figure 1.4.2.1: Definition of Input Registers.

Request		Response	
Field Name	(Hex)	Field Name	(Hex)
Function	04	Function	04
Starting Address Hi	00	Byte Count	02
Starting Address Lo	08	Input Reg. 9 Hi	00
Quantity of Input Reg. Hi	00	Input Reg. 9 Lo	0A
Quantity of Input Reg. Lo	01]	-

Figure 1.4.2.2: Example of reading input register 9. The contents of input register 9 are read as the two byte value 0x000A.

1.4.3 Modbus Function Code #16: Write Multiple Registers

This function code is used to write a block of contiguous registers (1 to 123 registers) in a remote device. The requested values are specified in the request data field. Data is packed as two bytes per register. The response returns the function code, starting address, and quantity of registers written.

Request

Function code	1 Byte	0x10
Starting Address	2 Bytes	0x0000 to 0xFFFF
Quantity of Registers	2 Bytes	0x0001 to 0x007B
Byte Count	1 Byte	2 x N*
Registers Value	N* x 2 Bytes	value

*N = Quantity of Registers

Response

Function code	1 Byte	0x10
Starting Address	2 Bytes	0x0000 to 0xFFFF
Quantity of Registers	2 Bytes	1 to 123 (0x7B)

Error

Error code	1 Byte	0x90
Exception code	1 Byte	01 or 02 or 03 or 04

Figure 1.4.3.1: Definition of Write Multiple Registers.

Request	lequest		
Field Name	(Hex)	Field Name	(Hex)
Function	10	Function	10
Starting Address Hi	00	Starting Address Hi	00
Starting Address Lo	01	Starting Address Lo	01
Quantity of Registers Hi	00	Quantity of Registers Hi	00
Quantity of Registers Lo	02	Quantity of Registers Lo	02
Byte Count	04		
Registers Value Hi	00		
Registers Value Lo	0A		
Registers Value Hi	01		
Registers Value Lo	02		

Figure 1.4.3.2: Example of writing the value 0x000A and 0x0102 to two registers starting at address 2.

1.5 Data Formats Used in Arc Sensors

1.5.1 Float

Definition: Floating point according to IEEE 754 (Single Precision)

Explanation:	sign	exponent	mantissa	total
Bit:	31	30 to 23	22 to 0	32
Exponent bias	127			

Figure 1.5.1.1: Definition Floating point Single Precision (4 bytes resp. 2 Modbus registers).

Example: translate the decimal value 62.85 into binary

Step 1: Conversion of the decimal value into binary fixed-point number

62 / 2	= 31	residue 0	LSB	0.85 * 2	= 1.70	=> 1 MSB
31 / 2	= 15	residue 1		0.70 * 2	= 1.40	=> 1
15/2	= 7	residue 1		0.40 * 2	= 0.80	=> 0
7/2	= 3	residue 1		0.80 * 2	= 1.60	=> 1
3/2	= 1	residue 1		0.60 * 2	= 1.20	=> 1
1/2	= 0	residue 1	MSB	0.20 * 2	= 0.40	=> 0
	= 1111	10		0.40 * 2	= 0.80	=> 0 LSB

= 0.11011001100110011001100...

62.85 = 111110.110110011001100110011001100...

Step 2: Normalizing (in order to obtain 1 bit on the left side of the fraction point)

111110.110110011001100110011001100... *2^**0** = 1.11110110110011001100110011001100... *2^**5**

Sep 3: Calculation of the dual exponent

```
2^{5} => Exponent 5
Exponent + Exponent bias = 5 + 127 = 132
132/2 = 66 residue 0 LSB
66/2 = 33 residue 0
33/2 = 16 residue 1
16/2 = 8 residue 0
8/2 = 4 residue 0
4/2 = 2 residue 0
2/2 = 1 residue 0
1/2 = 0 residue 1 MSB
= 10000100
```

Sep 4: Definition of the sign bit

Positive = 0 Negative = 1 = $\mathbf{0}$

Step 5: conversion into floating-point

1 Bit Sign + 8 Bit Exponent + 23 Bit Mantissa 0 10000100 11110110011001100110

(corresponds to 0x427B6666)

One important note for the 23 Bit Mantissa: The first bit (so-called hidden bit) is not represented. The hidden bit is the bit to the left of the fraction point. This bit is per definition always 1 and therefore suppressed.

Step 1: Separating the binary value into Sign, Exponent and Mantissa

0 10000100 11110110110011001100110

1 Bit Sign + 8 Bit Exponent + 23 Bit Mantissa

S: $\mathbf{0}_{\text{binary}} = \mathbf{0}$ (positive sign) E: 10000100 _{binary} = 1*2⁷ + 0*2⁶ + 0*2⁵ + 0*2⁴ + 0*2³ + 1*2² + 0*2¹ + 0*2⁰ = 128 + 0 + 0 + 0 + 0 + 4 + 0 + 0 = 132 M: 11110110011001100110 _{binary} = 8087142

Step 2: Calculate the decimal value

 $D = (-1)^{S} * (1.0 + M/2^{23}) * 2^{E-127}$ = (-1)⁰ * (1.0 + 8087142/2^{23}) * 2¹³²⁻¹²⁷ = 1 * 1.964062452316284 * 32 = **62.85**

1.5.2 Character

Definition:

The numerical representation of characters is defined in 8-Bit ASCII-Code-Table (ANSI X3.4-1986). Accordingly, each Modbus register in Arc Sensors can store two ASCII characters.

Example: translate the ASCII-string "2076" to Hex representation

The following interpretation is made according to the ASCII Codes-Table:

"2" => ASCII code table => 0x32 Low Byte
"0" => ASCII code table => 0x30
"7" => ASCII code table => 0x37
"6" => ASCII code table => 0x36 High Byte

"2076" => **0x36373032**

1.5.3 Decimal

Example: translate Decimal 2227169 to Hex

2227169 / 16	= 139198	residue 1 Low Byte
139198 / 16	= 8699	residue 14 => E
8699 / 16	= 543	residue 11 => B
543 / 16	= 33	residue 15 => F
33/16	= 2	residue 1
2 / 16	= 0	residue 2 High Byte
	= 0x21FBE	1

1.6 Modbus RTU Error Messages

Here are listed the Modbus standard error-codes we have implemented in Arc Sensors.

Error-Code	Status-Text
Hex	
0x00	OK
0x01	Illegal function
0x02	Illegal data address
0x03	Illegal data value
0X04	Slave device failure

Figure 1.6.1: implemented Error-Codes (see "Modbus_Application_Protocol_V1.1b" for details)

2 Conducell UPW Arc Sensor Commands in Modbus RTU

2.1 General

In order to communicate with a Conducell UPW Arc Sensor over Modbus RTU protocol a Modbus master terminal application software is needed. The Modbus RTU is an open standard and a number of free and commercial application toolkits are available.

This manual contains examples and illustrations from WinTECH Modbus Master ActiveX Control tool: WinTECH (<u>www.win-tech.com</u>) "Modbus Master OCX for Visual Basic". The Modbus Organisation (<u>www.modbus.org/tech.php</u>) provides other links to a wide variety of Modbus terminal software.

In the present manual the addressing of the Modbus registers starts at 1. But the Modbus master protocol operates with register addresses starting at 0. Usually, the Modbus master software translates the addressing. Thus, the register address of 2090 will be translated by the Modbus master software to 2089 which is sent to the sensor (Modbus slave).

<u>Attention:</u>

When configuring and calibrating the sensor, please limit write operations to a reasonable number. More than 100'000 write operations will physically damage the memory of the sensor. Furthermore, for the Free User Memory Space (see chapter 2.10.3), the write operations are limited to 10'000.

2.2 Operator levels and Passwords

2.2.1 Reading / Setting Operator Level

A Conducell UPW Arc Sensor can be operated in three different operator levels. Each operator level allows a defined access to a specific set of commands.

Abbreviation	Description	Code (hex)	Password (decimal)
U	User (lowest level)	0x03	0
А	Administrator	0x0C	18111978
S	Specialist	0x30	16021966

Figure 2.2.1.1: Definition of operator level and default passwords

At each power up or processor reset, the operator level falls back to the default level U.

The active operator level can be read and written in register 4288.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers			function code	access	access
4288	4	Operator Level	Password	3, 4, 16	U/A/S	U/A/S
	1 O. Definition	of register 1000				

Figure 2.2.1.2: Definition of register 4288.

Command: Active operator level		Modbus address:	4288	Length: 4	Туре: 3	Read
Parameter:	Operator level	Password				
Format:	hex	decimal				
Value:	0x03	0				

Figure 2.2.1.3: Example to read the active operator level (function code 3, start register address 4288, number of registers 4): The active operator level is 0x03 (User). The sensor does not report the password. The value 0 is returned instead.

Command: Operator level		Modbus address:	4288	Length: 4	Туре: 3	Read
Parameter:	Operator level	Password				
Format:	Hex	decimal				
Value:	0x30	0				

Figure 2.2.1.4: Example to read the active operator level: the active level is 0x30 (Specialist). The sensor does not report the password. The value 0 is returned instead.

Command: C	perator level	Modbus address:	4288	Length: 4	Type: 16	Write
Parameter:	Operator level	Password				
Format:	Hex	decimal				
Value:	0x03	0				

Figure 2.2.1.5: Example to set the operator level to 0x03 (User). The password 0 has to be sent.

Command: C	perator level	Modbus address:	4288	Length: 4	Туре: 16	Write
Parameter:	Operator level	Password				
Format:	Hex	decimal				
Value:	0x0C	18111978				

Figure 2.2.1.6: Example to set the active operator level to 0xC (Administrator). The correct password has to be sent.

Command: Operator level M		Modbus address:	4288	Length: 4	Туре: 16	Write
Parameter:	Operator level	Password				
Format:	Hex	decimal				
Value:	0x0B	18111978				

Figure 2.2.1.7: Example for a Modbus error. If the level or the password is not correct, (Operator level = 0x0B), the sensor answers with a Modbus error message "Slave device exception response" (see chapter 1.6, "VisiFerm DO Modbus RTU Programmer's Manual" (Ref 624179)).

2.2.2 Changing Passwords for Operator Level

The passwords for accessing the operator levels A and S can be modified by S (Specialist) only. U (User) and A (Administrator) have no right to change any password. The new password will remain stored after power down.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers			function code	access	access
4292	4	Level	New password	16	None	S
Elauro 2.2	2.1. Dofinition	of register 4202	•	•	•	-

Figure 2.2.2.1: Definition of register 4292.

Command: Password		Modbus address:	4292	Length: 4	Type: 16	Write
Parameter:	Operator level	Pass number				
Format:	Hex	Decimal				
Value:	0x30	12345678				

Figure 2.2.2.2: Example to set the Password of operator level S (code 0x30) to 12345678.

2.3 Configuration of the serial RS485 Interface

Factory settings of the RS485:

Parity is none, 1 start bit, 8 data bits, 2 stop bits (in total: 11 bits).

2.3.1 Device Address

2.3.1.1 Reading and Writing the Device Address

The sensor specific device address can be read and written in register 4096.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
4096	2	device address	3, 4, 16	U/A/S	S

Figure 2.3.1.1.1: Definition of register 4096.

Command: C	com address	Modbus address:	4096	Length: 2	Туре: 3	Read
Parameter:	Modbus address					
Format:	Decimal					
Value:	1					

Figure 2.3.1.1.2: Example to read the device address.

The device address can be set by S (Specialist), default value is 1.

Command: Com address		Modbus address:	4096	Length: 2	Туре: 16	Write
Parameter:	Modbus address					
Format:	Decimal					
Value:	3					

Figure 2.3.1.1.3: Example to set the device address to 3.

2.3.1.2 Reading the Device Address Limits

The device address limits can be read in register 4098.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers			function code	access	access
4098	4	Min. device	Max. device	3, 4	U/A/S	none
		address	address			

Figure 2.3.1.2.1: Definition of register 4098.

Command: Com address limits		Modbus address: 4098		Length: 4	Туре: 3	Read
Parameter:	Min value	Max value				
Format:	Decimal	Decimal				
Value:	1	32				

Figure 2.3.1.2.2: Example to read the device address limits: Min = 1, Max = 32.

2.3.2 Baud Rate

2.3.2.1 Reading and Writing the Baud Rate

The baud rate can be read and written in register 4102.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
4102	2	Baud rate code	3, 4, 16	U/A/S	S
		(definition see below)			

Figure 2.3.2.1.1: Definition of register 4102.

The code for the baud rate is defined as follows:

Baud rate	4800	9600	19200	38400	57600	115200			
Code	2	3	4	5	6	7			
F : 0.0.0.1									

Figure 2.3.2.1.2: Code for the baud rates.

Command: Com baud rate		Modbus address:	4102	Length: 2	Туре: 3	Read
Parameter:	Baud rate code					
Format:	Decimal					
Value:	4					

Figure 2.3.2.1.3: Example to read the baud rate code, 4 corresponds 19200 baud.

The baud rate can be set by S (Specialist), default is 19200.

Command: Com baud rate		Modbus address: 4102		Length: 2	Type: 16	Write
Parameter:	Baud rate code					
Format:	Decimal					
Value:	5					

Figure 2.3.2.1.4: Example to set the baud rate to 38400 baud with code 5.

2.3.2.2 Reading the Baud Rate Limits

The baud rate limits can be read in register 4104.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers			function code	access	access
4104	4	Min. Baud rate	Max. Baud rate	3, 4	U/A/S	none
		code	code			

Figure 2.3.2.2.1: Definition of register 4104.

Command: Com baud limits		Modbus address: 4104		Length: 4	Туре: 3	Read
Parameter:	Min Baud rate code	Max Baud rate code				
Format:	Decimal	Decimal				
Value:	2	7				

Figure 2.3.2.2.2: Example to read the baud rate code limits: Min = 2, Max = 7 (see Figure 2.3.2.1.2).

2.4 Configuration of the Analog Interfaces

2.4.1 Available Analog Interfaces and Digtal IO

A Conducell UPW Arc Sensor has two individual 4 -20 mA analog interfaces that have identical functionalities, but can be configured independently from each other:

Analog Output Interface 1 (AO1)

Analog Output Interface 2 (AO2)

and two Digital I/O Interfaces:

Digital I/O 1 (DIO1)

• Digital I/O 2 (DIO2)

The number of analog readable interfaces is defined in register 4320.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write				
register	registers		function code	access	access				
4320	2	Available analog interfaces	3, 4	U/A/S	none				
Eiguro 2.4	Figure 2.4.1.1: Definition of register 4320								

Figure 2.4.1.1: Definition of register 4320.

Command: A	Command: Avail analog interfaces		4320	Length: 2	Туре: 3	Read
Parameter:	Available analog interfaces					
Format:	Hex					
Value:	0xC000003					

Figure 2.4.1.2: Example to read the available analog interfaces. The answer is "0xC0000003" meaning that there exists an Analog Interface 1 (AO1), an Analog Interface 2 (AO2), a Digital I/O 1 (DIO1) and a Digital I/O 2 (DIO2).

2.4.2 Availiable Analog Interface Modes

With register 4322, the available analog interface modes for AO1 and AO2 are defined

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Modbus function code	Read access	Write access
4322	8	Available Analog Interface Modes for AO1	Available Analog Interface Modes for AO2	reserved	reserved	3,4	U/A/S	none

Figure 2.4.2.1: Definition of register 4322. It defines the analog interface modes available for AO1 and AO2. The analog interface modes are described in Figure 2.4.2.2.

Code	Analog Interface	Description
(Hex)	Mode	
0x00	4-20 mA inactive	Analog interface deactivated
0x01	4-20 mA fixed	Set to a constant output value for current loop testing
0x02	4-20 mA linear	Linear output of measurement (PMC1 / 6)
0x04	4-20 mA bilinear	Bilinear output of measurement (PMC1 / 6)

Figure 2.4.2.2: Definition of the analog interface modes, valid for both AO1 and AO2.

Command: Analog Interface Modes		Modbus address:	4322	Length: 8	Туре: 3	Read
Parameter:	Available Analog	Available Analog	reserve	d	reserved	
	Interface Modes for	Interface Modes for				
	AO1	AO2				
Format:	Hex	Hex	Hex		Hex	
Value:	0x07	0x07	0x0		0x0	

Figure 2.4.2.3: Example to read register 4322: all modes defined in Figure 2.4.2.2 are available for both AO1 and AO2.

2.4.3 Description of the Analog Interfaces 1 and 2

Register 4352 / 4480 contain the descriptions of AO1 / AO2 as plain text ASCII:

Start	Number of	Reg1 to Reg8	Modbus	Read	Write			
register	registers	16 ASCII characters	function code	access	access			
4352	8	Description of AO1	3, 4	U/A/S	none			
4480	8	Description of AO2	3, 4	U/A/S	none			
Figure 2.4	Figure 2.4.3.1: Definition of register 4352 and 4480							

Figure 2.4.3.1: Definition of register 4352 and 4480

Command: Current interface text		Modbus address:	4352	Length: 8	Туре: 3	Read
Parameter:	Text					
Format:	Character					
Value:	mA interface #1					

Figure 2.4.3.2: Example to read the description of AO1. The text is "**mA interface #1**". Accordingly, AO1 is physically configured as a 4-20 mA current output.

Command: Current interface text		Modbus address:	4480	Length: 8	Туре: 3	Read
Parameter:	Text					
Format:	Character					
Value:	mA interface #2					

Figure 2.4.3.3: Example to read the description of AO2. The text is "**mA interface #2**". Accordingly, AO2 is physically configured as a 4-20 mA current output.

<u>Attention</u>:

- Conducell UPW Arc Sensors do not have an ECS (in contrast to VisiFerm DO)!
- Data structure: register address offset between AO1 and AO2 is always 128.

2.4.4 Selection of an Analog Interface Mode

The analog interface mode of AO1 / AO2 is selected by programming the analog interface mode in register 4360 / 4488.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write			
register	registers		function code	access	access			
4360	2	Active analog interface mode for AO1	3, 4, 16	U/A/S	S			
4488	2	Active analog interface mode for AO2	3, 4, 16	U/A/S	S			
Figure 2.4.	Figure 2.4.4.1: Definition of register 4360 / 4488. Only one bit can be set.							

Command: Active interface mode		Modbus address:	Modbus address: 4360		Type: 16	Write
Parameter:	Mode					
Format:	Hex					
Value:	0x02					

Figure 2.4.4.2: Example to set the analog interface mode of AO1 to 0x02 (4-20 mA linear output).

2.4.5 Configuration of the Analog Interface

Note:

The configuration of AO1 / AO2 is only effective if register 4360 / 4488 (active analog interface mode) is set to the value 0x01, 0x02 or 0x04.

2.4.5.1 Reading the Available Primary Measurement Channels to be Mapped to the Analog Output

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
4362	2	Available Primary Measurement Channels for AO1	3, 4	U/A/S	none
4490	2	Available Primary Measurement Channels for AO2	3, 4	U/A/S	none

Figure 2.4.5.1.1: Definition of register 4362 / 4490.

For the definition of the Primary Measurement Channels (PMC), see chapter 2.6.

Figure 2.4.5.1.2: Code for selection of the primary measurement channel.

Command: Available PMC AO1		Modbus address:	4362	Length: 2	Туре: 3	Read
Parameter:	Available PMC 20 mA					
Format:	hex					
Value:	0x21					

Figure 2.4.5.1.3: Example to read the available Primary Measurement Channels (PMC) for AO1. The hexadecimal value of "0x21" defines that PMC1 (conductivity) or PMC6 (temperature) can be mapped to AO1. Register 4490 contains the same value "0x21". Accordingly, PMC1 or PMC6 can be mapped to AO2 as well.

2.4.5.2 Selecting the Primary Measurement Channel to be Mapped to the Analog Interface

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
4364	2	Selected PMC for AO1	3, 4, 16	U/A/S	S
4492	2	Selected PMC for AO2	3, 4, 16	U/A/S	S

Figure 2.4.5.2.1: Definition of register 4364 / 4492. Only one bit can be set.

Command: Active PMC AO1		Modbus address:	4364	Length: 2	Туре: 3	Read
Parameter:	Current PMC 20mA					
Format:	hex					
Value:	0x01					

Figure 2.4.5.2.2: Example to read the current primary measurement channel mapped to AO1, defined in register 4364. The value "0x01" is returned, saying that PMC1 is mapped to AO1 (factory setting).

The factory setting for register 4492 is "0x20", mapping PMC6 to AO2.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers			function code	access	access
4366	4	Min physical	Max physical	3, 4	U/A/S	none
		output current	output current			
		for AO1 [mA]	for AO1 [mA]			
4494	4	Min physical	Max physical	3, 4	U/A/S	none
		output current	output current			
		for AO2 [mA]	for AO2 [mA]			

2.4.5.3 Reading the Minimum and Maximum Possible Physical Output Current

Figure 2.4.5.3.1: Definition of register 4366 / 4494

Command: Limits AO1		Modbus address: 4366		Length: 4	Туре: 3	Read
Parameter:	Min limit [mA]	Max limit [mA]				
Format:	Float	Float				
Value:	3.5	22				

Figure 2.4.5.3.2: Example to read the min and max output current of AO1. Min is fixed to 3.5 and Max is fixed to 22 mA (Currents above 20 and below 4 mA indicate erroneous measurements or errors).

The same values are stored in register 4494 for AO2.

2.4.5.4 Reading the Minimum, Maximum and Mid Current for Measurement Value Output

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus function code	Read access	Write access
4370	6	Min output for measurement value for AO1 [mA]	Max output for measurement values for AO1 [mA]	Mid output (bilinear) for measurement values for AO1 [mA]	3, 4	U/A/S	none
4498	6	Min output for measurement value for AO2 [mA]	Max output for measurement values for AO2 [mA]	Mid output (bilinear) for measurement values for AO2 [mA]	3, 4	U/A/S	none

Figure 2.4.5.4.1: Definition of register 4370 / 4498

Command: M	IinMaxMid current AO1	Modbus address:	4370	Length: 6	Туре: 3	Read
Parameter:	Min current [mA]	Max current [mA]	Mid cu	Irrent [mA]		
Format:	Float	Float	Float			
Value:	4	20	12			

Figure 2.4.5.4.2: Example to read the min, max and mid output current for measurement values for AO1. They are fixed to 4, 20 and 12 mA.

The same values are stored in register 4498 for AO2.

Note:

Mid current must always be defined. However, in linear output mode, the mid current value has no physical meaning and will not affect the 4-20 mA output.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
4376	2	Selected physical unit of AO1 (see chapter 2.6.1)	3, 4	U/A/S	none
4504	2	Selected physical unit of AO2 (see chapter 2.6.1)	3, 4	U/A/S	none

2.4.5.5 Reading the Selected Physical Unit for Analog Interface

Figure 2.4.5.5.1: Definition of register 4376 / 4504.

Command: A	vail unit AO1	Modbus address:	4376	Length: 2	Туре: 3	Read
Parameter:	Available unit					
Format:	Hex					
Value:	0x00000200					

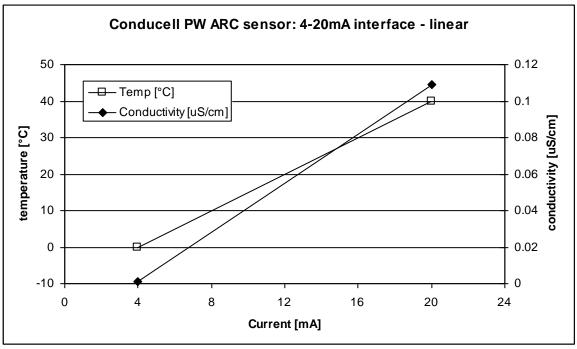
Figure 2.4.5.5.2: Example to read the selected unit of the selected PMC of AO1. The value returned is "0x0200", accordingly, the unit is μ S/cm. The physical unit for PMC is defined in Reg. 2090 or 2410 and applies automatically for 4-20 mA output.

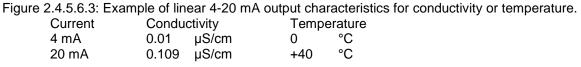
2.4.5.6 Defining the Measurement Values for 4, 12 and 20 mA Output

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus function code	Read access	Write access
4378	6	Measurement value at Min Output Current (4 mA) for AO1	Measurement value at Max Output Current (20 mA) for AO1	Measurement value at Mid Output Current (12 mA) for AO1	3, 4, 16	U/A/S	S
4506	6	Measurement value at Min Output Current (4 mA) for AO2	Measurement value at Max Output Current (20 mA) for AO2	Measurement value at Mid Output Current (12 mA) for AO2	3, 4, 16	U/A/S	S

Figure 2.4.5.6.1: Definition of register 4378 / 4506.

Command: MinMaxMid value AO1		Modbus address: 4378		Length: 6	Туре: 16	Write
Parameter:	Min value	Max value	Mid v	alue		
Format:	Float	Float	Float			
Value:	0.001	0.109	0.055	5		


Figure 2.4.5.6.2: Example to set the min value to 0.001 (for 4 mA), the max value to 0.109 (for 20 mA) and the mid value to 0.055 (for 12 mA). The corresponding physical unit (in this example µS/cm) can be read in register 4376 / 4504 and in 2090 / 2410.


Note:

Mid current must always be defined. However, in linear output mode, the mid current value has no physical meaning and will not affect the 4-20 mA output.

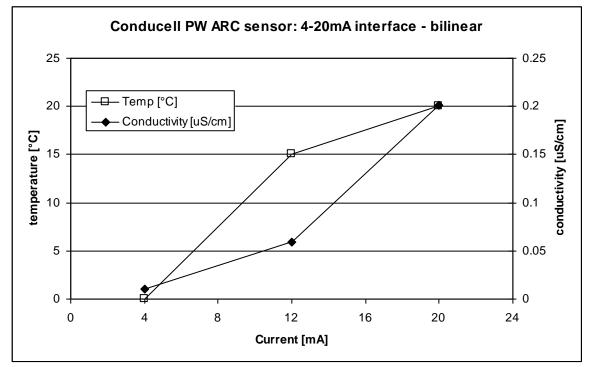


Figure 2.4.5.6.4: Example of bilinear 4-20 mA output characteristics for conductivity or temperature. Current Conductivity Temperature 4 mA 0.01 µS/cm 0 °C 12 mA 0.059 µS/cm +15 °C 20 mA 0.201 µS/cm +20 °C

<u>Attention:</u>

When assigning measurement values to 4-20 mA analog output by using register 4378 / 4506, you need to consider the following:

- The PMC you have mapped to AO1 / AO2 (register 4364 / 4492)
- The physical unit currently in use for the selected PMC (register 2090 for PMC1 (conductivity) and register 2410 for PMC6 (temperature).

Therefore, when the operator redefines one of the register 4364 / 4492, 2090 / 2410, the definitions of the register 4378 / 4506 should be reviewed. If not, the current output at the 4-20 mA interfaces may be wrong.

Note:

The physical unit of the analog output corresponds always to the unit that is set for the selected PMC (register 2090 for PMC1 or register 2410 for PMC6). Accordingly, not only the physical unit μ S/cm is selectable at the 4-20 mA interface, but also the units mS/cm, kOhm and MOhm (for conductivity), as well as degrees centigrade or Kelvin (for temperature).

Example:

Register 4364 is set to 1 (PMC1 is mapped to AO1).

Register 2090 is set to 0x0400 (the unit "mS/cm" is assigned to PMC1).

Register 4378 is set to 0.0.001 and 0.101 (4 mA = 0.001 mS/cm, 20 mA = 0.101 mS/cm).

The sensor reads currently 0.026 mS/cm, the output at the 4-20 mA is accordingly 8 mA.

The operator now re-assigns register 2090 to the value of 0x0200 (unit = μ S/cm), but does not modify all other registers. As the sensor is still immersed in the same measurement solution, it reads now 26 μ S/cm. At the analog output, as 20 mA is programmed to a value of 0.101 by register 4378, the current will go to the maximum value of 20 mA. This will generate an interface warning "4-20 mA current set point not met".

2.4.5.7 Defining a Constant Current Output for Testing

Note:

For constant current output, the AO1 / AO2 must be set to analog interface mode 0x01:

Start register	Number of registers	Reg1 / Reg2	Modbus function code	Read access	Write access
4384	2	Constant current output value for AO1 [mA]	3, 4, 16	U/A/S	S
4512	2	Constant current output value for AO2 [mA]	3, 4, 16	U/A/S	S

Figure 2.4.5.7.1: Definition of register 4384 / 4512.

Command: F	ixed value AO1	Modbus address: 4	4384	Length: 2	Туре: 3	Read
Parameter:	Fixed value [mA]					
Format:	Float					
Value:	10					

Figure 2.4.5.7.2: Example to read the constant current output in mode 0x01 for AO1. It is set to 10 mA.

HAMILT®N

2.4.5.8 Defining the Error and Warning Output of the 4-20 mA Interface

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Modbus function	Read access	Write access
5	Ŭ	J	J	J	5	code		
4386	8	Code of warnings and errors (see Figure 2.4.5.8.2) for AO1	Current in case of "warning" [mA] for AO1	Current in case of "error" [mA] for AO1	Current in case of "T exceed" [mA] for AO1	3, 4, 16	U/A/S	S
4514	8	Code of warnings and errors (see Figure 2.4.5.8.2) for AO2	Current in case of "warning" [mA] for AO2	Current in case of "error" [mA] for AO2	Current in case of "T exceed" [mA] for AO2	3, 4, 16	U/A/S	S

Errors and warnings can be mapped to the AO1 / AO2.

Figure 2.4.5.8.1: Definition of register 4386 / 4514.

Bit #	Code (hex)	Behaviour of the 4-20 mA interface in case of errors and warnings
0 (LSB)	0x000001	Error continuous output
1-15		not available
16	0x010000	Warning continuous output
17-31 (MSB)		not available

Figure 2.4.5.8.2: Code for the 4-20 mA interface in case of errors and warnings.

If the corresponding bits for the errors and warnings are not set (=0x00), the respective options are inactive.

The default settings are:

- Code 0x01
- current in case of warnings: 3.5 mA
- current in case of errors:
- current in case of temperature exceed: 3.5 mA

Command: ErrorWarnings AO1		Modbus address: 4386 Length: 8		8 Type: 3 Read
Parameter:	Warning code	Current in case of	Current in case	of Current in case of
		warning	error	temperature exceed
		[mA]	[mA]	[mA]
Format:	Hex	Float	Float	Float
Value:	0x010001	3.5	3.5	3.5

3.5 mA

Figure 2.4.5.8.3: Example: Read the settings for AO1 in case of warnings and errors. Warning code 0x010001 corresponds to the continuous output current in case of warning (0x010000) and continuous output current in case of error (0x01) of 3.5 mA. The output current in case of temperature exceed is 3.5 mA.

2.4.6 Reading the Internally Measured Output Current

Reg. 4414 / 4542 provides internal parameters of AO1 / AO2:

- the setpoint to which the current is regulated in a closed loop control
- the electrical current the sensor is measuring to feed the closed loop control

These values are helpful in order to compare against the externally measured electrical current.

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Modbus function code	Read access	Write access
4414	4	Set point [mA] AO1	Internally measured [mA] AO1	3, 4	U/A/S	none
4542	4	Set point [mA] AO2	Internally measured [mA] AO2	3, 4	U/A/S	none

Figure 2.4.6.1: Definition of register 4414 / 4542.

Command: Internal values AO1		Modbus address:	4414	Length: 4	Туре: 3	Read
Parameter:	Set point	Internally measured				
	[mA]	[mA]				
Format:	Float	Float				
Value:	9.99186	9.99742				

Figure 2.4.6.2: Example to read the internal values of AO1, depending on the analog interface mode.

2.5 Configuration of the Digital IO

2.5.1 Available Digital IO

A Conducell UPW Arc Sensor has two individual physical digital interfaces which have identical functionalities, but can be configured independently from each other.

- Digital I/O 1 (DIO1)
- Digital I/O 2 (DIO2)

See chapter 2.4.1 for details.

2.5.2 Digital Interface Parameters

With register 4348, the available PMCs for the Digital Interfaces are defined. With the register 4350, the hysteresis of the Digital Interfaces is set. The parameter must be within 1 and 20. A limit is defined for the DIO to switch from low to high or vice versa. If the PMC is in the range for the other state, the PMC must continuously stay for the number of measurements defined in register 4350 in the state to switch the output. This is valid for high to low and for low to high. Because a measurement takes place every 3 seconds, the output value of the selected PMC must be in the desired range for three seconds (value of 1) to one minute (value of 20) to take any effect on the output.

Example: The stability value is set to 4 and the limit value for conductivity is 1 μ S/cm. If the output for a conductivity smaller than 1 μ S/cm is low and the actual state is low, 4 consecutive measurement (equals 12s) values must be above 1 μ S/cm to switch the DIO to high.

Start	Number of	Reg1 / Reg2	Modbus function	Read	Write
register	registers		code	access	access
4348	2	Available PMCs for DIOs	3,4	U/A/S	none
4350	2	Hysteresis	3,4	U/A/S	S

Figure 2.5.2.1: Definition of register 4348 and 4350. It defines the available PMCs for the digital IO and the hysteresis criteria.

Command: D	Digital Interface av. PMC	Modbus address:	4348	Length: 2	Туре: 3	Read
Parameter:	Available PMCs					
Format:	Hex					
Value:	0x01					

Figure 2.5.2.2: Example to read the available PMCs for the digital interfaces. See figure Figure 2.6.1.1 for explanation of the value.

Command: D	igital Interface Stability	Modbus address:	4350	Length: 2	Туре: 3	Read
Parameter:	Stability					
Format:	Decimal					
Value:	10					

Figure 2.5.2.3: Example to read the stability criteria of the digital interfaces. The value can be set between 1 (equals 3s) and 20 (equals 20s).

2.5.3 Description of the Digital IO 1 and 2

Register 4472 / 4600 contain the descriptions of DIO1 / DIO2 as plain text ASCII:

Start	Number of	Reg1 to Reg8	Modbus function	Read	Write
register	registers	16 ASCII characters	code	access	access
4472	8	Description of DIO1	3, 4	U/A/S	none
4600	8	Description of DIO2	3, 4	U/A/S	none

Figure 2.5.3.1: Definition of register 4472 and 4600

Command: D	igital interface text .#1	Modbus address:	4472	Length: 8	Туре: 3	Read
Parameter:	Text					
Format:	Character					
Value:	Digital I/O #1					

Figure 2.5.3.2: Example to read the description of DIO1. The text is "Digital I/O #1".

2.5.4 Selection of the Available PMC

Register 4470 / 4598 contain the selected PMC for DIO1 respectively DIO2.

Start	Number of	Reg1 / Reg2	Modbus function	Read	Write
register	registers		code	access	access
4470	2	Selected PMC DIO1	3, 4,16	U/A/S	S
4598	2	Selected PMC DIO2	3, 4,16	U/A/S	S

Figure 2.5.4.1: Definition of register 4470 and 4598. The PMCs from the register 4348 can be chosen.

Command: Digital IO 1 PMC		Modbus address:	4470	Length: 2	Туре: 16	Write
Parameter:	Selected PMC					
Format:	Hex					
Value:	0x01					

Figure 2.5.4.2: Example to set the PMC1 for the DIO1.

2.5.5 Available Modes

With the register 4468, the available modes for the DIO1 are defined and with the register 4596, the modes for the DIO2 are defined

Start	Number of	Reg1 / Reg2	Modbus function	Read	Write
register	registers		code	access	access
4468	2	Available Digital IO Modes for DIO1	3,4	S	none
4596	2	Available Digital IO Modes for DIO2	3,4	S	none

Figure 2.5.5.1: Definition of the registers 4468 and 4596. They define the available modes for DIO1 and DIO2. The digital IO modes are described in Figure 2.5.2.2.

Code	Digital Interface	Description			
(Hex)	Mode				
0x00	DIO off	Digital interface deactivated			
0x01	USP Warning	DIO triggers on USP Warning			
0x02	USP Alarm	DIO triggers on USP Alarm			
	0x02 USP Alarm DIO triggers on USP Alarm				

Figure 2.5.5.2: Definition of the digital interface modes, valid for both DIO1 and DIO2. See chapter 2.7.5 for a detailed explanation of the USP function.

Note: Only one warning can be active at the same time (either USP warning or USP alarm or none) whereas USP Alarm is prioritized.

Command: D	Command: Digital Interface Modes		4468	Length: 2	Туре: 3	Read
Parameter:	Available Digital IO Modes for DIO1					
Format:	Hex					
Value:	0x03					

Figure 2.5.5.3: Example to read register 4468. 0x03 contains 0x01 (USP warning) and 0x02 (USP alarm). All modes from Figure 2.5.2.2 are available for DIO1.

2.5.6 Selection of a Digital IO Mode

The mode of DIO1 / DIO2 is selected by writing in register 4464 / 4592 which are available from register 4468 / 4596. Additionally, the signal can be inverted. In the normal mode, there is voltage on the DIO if the selected warning is active. If there is no warning, the DIO is off. For the inverted signal mode it is vice versa. The DIO is off if the warning is active and under voltage if the warning is off. The inverted signal mode is written as follows

0x00: Normal mode 0x01: Inverted mode

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers			function code	access	access
4464	4	Active mode for DIO1	Inverted DIO1	3, 4, 16	U/A/S	S
4592	4	Active mode for DIO2	Inverted DIO2	3, 4, 16	U/A/S	S

Figure 2.5.6.1: Definition of register 4464 / 4592. Only one bit can be set for Reg1 / Reg2 i.e. one single mode.

Command: Active interface mode		Modbus address:	4464	Length: 4	Type: 16	Write
Parameter:	Mode	Signal				
Format:	Hex	Hex				
Value:	0x02	0x01				

Figure 2.5.6.2: Example to set the digital interface mode of DIO1 to 0x02 (USP alarm) and to activate the inverted signal mode (0x01).

2.6 Measurement

2.6.1 Definition of Measurement Channels and Physical Units

The Conducell UPW Arc Sensor Modbus register structure allows the definition of 6 individual Primary Measurement Channels (PMC), and 16 individual Secondary Measurement Channels (SMC).

Bit #	Hex code	Description	Definition
0 (LSB)	0x000001	PMC1	Conductivity
1	0x000002	PMC2	not available
			not available
4	0x000010	PMC5	not available
5	0x000020	PMC6	Temperature
6	0x000040	SMC1	Resistance 2- El
7	0x000080	SMC2	Resistance
8	0x000100	SMC3	not available
21 (MSB)	0x200000	SMC16	not available

Figure 2.6.1.1: Full list of PMC1 to PMC6 and SMC1 to SMC16.

In Register 2048, the available PMC and SMC are defined for the Conducell Arc Sensor and the specific operator levels.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
2048	2	Available measurement channels	3, 4	U/A/S	none
		PMC and SMC (bitwise set)			

Figure 2.6.1.2: Definition of register 2048.

Command: A	Command: Avail. PMC and SMC		2048	Length: 2	Туре: 3	Read
Parameter:	Avail. PMC and					
	SMC					
Format:	Hex					
Value:	0xA1					

Figure 2.6.1.3: Example to read Reg. 2048 for Conducell UPW Arc. The value returned depends on the currently active operator level.

In case of operator A/U, the value 0xA1 is returned. In other words the following PMC and SMC are available to A/U: PMC1 / PMC6 / SMC2

In case of operator S, the value 0xE1 is returned. In other words the following PMC and SMC are available to S: PMC1 / PMC6 / SMC1 / SMC2

Bit #	Hex code	Physical unit	Start register. (8 ASCII characters, length 4 registers, Type 3, read for U/A/S)
0 (LSB)	0x00000001	none	1920
1	0x00000001	K	1924
2	0x00000002	°C	1928
3	0x00000004	°F	1932
4	0x00000008	%-vol	1936
5	0x00000010	%-voi %-sat	1930
5 6			
6 7	0x00000040	ug/l ppb	1944
	0x0000080	mg/l ppm	1948
8	0x00000100	g/l	1952
9	0x0000200	uS/cm	1956
10	0x00000400	mS/cm	1960
11	0x00000800	1/cm	1964
12	0x00001000	рН	1968
13	0x00002000	mV/pH	1972
14	0x00004000	kOhm	1976
15	0x00008000	MOhm	1980
16	0x00010000	pА	1984
17	0x00020000	nA	1988
18	0x00040000	uA	1992
19	0x00080000	mA	1996
20	0x00100000	uV	2000
21	0x00200000	mV	2004
22	0x00400000	V	2008
23	0x00800000	mbar	2012
24	0x01000000	Ра	2016
25	0x02000000	Ohm	2020
26	0x04000000	%/°C	2024
27	0x08000000	0	2028
28	0x10000000	not used	2032
29	0x20000000	not used	2036
30	0x40000000	not used	2040
31 (MSB)	0x80000000	SPECIAL	2044

The Conducell UPW Arc Sensor register structure uses the following physical units used for Primary or Secondary Measurement Channels.

Figure 2.6.1.4: Definition of physical units used for PMC and SMC.

Command: Unit text		Modbus address:	1956	Length: 4	Туре: 3	Read
Parameter:	Text					
Format:	Character					
Value:	uS/cm					

Figure 2.6.1.5: Example to read the physical unit in plain text ASCII in register 1956

2.6.2 Primary Measurement Channel 1 (Conductivity)

2.6.2.1 Description of PMC1

In register 2080, a plain text ASCII description of PMC1 is given.

Start	Number of	Reg1 to Reg8	Modbus	Read	Write
register	registers	16 ASCII characters	function code	access	access
2080 8 Description of PMC1		Description of PMC1	3, 4	U/A/S	none
Figure 2.6	2 1 1 · Dofinitia	on of register 2080			

Figure 2.6.2.1.1: Definition of register 2080.

Command: PMC 1 text		Modbus address:	2080	Length: 8	Туре: 3	Read
Parameter:	Text					
Format:	Character					
Value:	Cond					

Figure 2.6.2.1.2: Example to read the description. It is "Cond".

2.6.2.2 Selecting the Physical Unit for PMC1

In register 2088, the available physical units for this channel are defined.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
2088	2	Available physical units of PMC1	3, 4	U/A/S	none
Figure 2.6	2 2 1 · Definitio	on of register 2088			

Figure 2.6.2.2.1: Definition of register 2088.

Command: PMC1 available units		Modbus address:	2088	Length: 2	Туре: 3	Read
Parameter:	Units					
Format:	Hex					
Value:	0x0000C600					

Figure 2.6.2.2.2: Example to read the available physical units of PMC1: µS/cm (0x0200), mS/cm (0x0400), kOhm (0x4000), MOhm (0x8000), in total 0xC600.

In register 2090, the active physical unit for this channel can be selected, by choosing one of the physical units that are defined in register 2088.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
2090	2	Selected active physical unit for the PMC1	16	none	S

Figure 2.6.2.2.3: Definition of register 2090. Only one bit can be set.

Command: F	MC1 set unit	Modbus address:	2090	Length: 2	Type: 16	Write
Parameter:	Unit					
Format:	Hex					
Value:	0x0200					

Figure 2.6.2.2.4: Example to set the physical unit of PMC1 to µS/cm (0x0200).

Changing the physical unit has also an influence on the output of AO1 / AO2, as the same physical unit is active for the analog outputs. All limits of the 4-20 mA analog output have to be redefined after changing the physical unit!

2.6.2.3 Reading the measurement value of PMC1

Start	Num-	Reg1 /	Reg3 /	Reg5 /	Reg7 /	Reg9 /	Modbus	Read	Write
reg.	ber of	Reg2	Reg4	Reg6	Reg8	Reg10	function	access	access
2090	reg. 10	Selected physical unit	Measure -ment value of PMC1 ⁽¹⁾	Measure -ment status ⁽²⁾	Min allowed value ⁽¹⁾	Max allowed value ⁽¹⁾	<u>code</u> 3, 4	U/A/S	none

Register 2090 is also used to read the measurement values of PMC1.

Figure 2.6.2.3.1: Definition of register 2090. Measurement value of PMC1.

⁽¹⁾ Value is always in the physical unit defined in register 2090.

⁽²⁾ Definition of the status see chapter 2.6.4. All status bits set to zero means: no problem.

Command: PMC1 read		Modbus	address: 2090	Length: 10 Ty	pe: 3 Read	
Parameter:	Unit	Value	Status	Min limit	Max limit	
Format:	Hex	Float	Hex	Float	Float	
Value:	0x0200	8.037725	0x00	0.001	2500	
Value. 0x0200 0.037725 0x00 0.001 2500 Figure 2.0.0.2.2 Everypla to read variator 2000. Dhysical unit is got to u0(or (0x0200). DMC4 is 0.02 0.001 2500						

Figure 2.6.2.3.2: Example to read register 2090. Physical unit is set to μ S/cm (0x0200), PMC1 is 8.03 (μ S/cm), Status is 0x00, Min allowed value is 0.001 (μ S/cm), Max allowed value is 2'500 (μ S/cm).

Command: PMC1 read		Modbus	address: 2090	Length: 10 7	ype: 3	Read
Parameter:	Unit	Value	Status	Min limit	Max limit	
Format:	Hex	Float	Hex	Float	Float	
Value:	0x0400	1.469648E-02	0x00	0.000001	2.5	

Figure 2.6.2.3.3: Example to read register 2090. Physical unit is set to mS/cm (0x0400), PMC1 is 0.014 (mS/cm), Status is 0x00, Min allowed value is 0.000001 (mS/cm), Max allowed value is 2.5 (mS/cm).

For the definition of the measurement status see chapter 2.6.4.

- You cannot read selectively the registers 3 and 4 for the measurement value only. You have to read the entire length of the command (10 registers) and extract the desired information.
- The PMC1 readings at register 2090 depend on the parameter PA3 (temperature compensation reference temperature) and PA4 (temperature compensation factor) (please refer to chapter 2.7.2 and 2.7.3).

If PA4=0, the register 2090 reports the conductivity reading at the effective measurement temperature.

If PA4 is set to the correct temperature compensation factor of the measurement solution, the register 2090 reports the hypothetical conductivity of the measurement solution, calculated to the reference temperature (PA3, 20°C or 25°C). The specialist has to make sure that PA4 corresponds to the measurement solution.

2.6.3 Primary Measurement Channel 6 (Temperature)

2.6.3.1 Description of PMC6

In register 2400, a plain text ASCII description of PMC6 is given

Start	Number of	Reg1 to Reg8	Modbus	Read	Write
register	registers	16 ASCII characters	function code	access	access
2400	8	Description of PMC6	3, 4	U/A/S	none
Figure 2.6	3 1 1 · Definitio	on of register 2/00			

Figure 2.6.3.1.1: Definition of register 2400.

Command: PMC6 text		Modbus address:	Modbus address: 2400		Туре: 3	Read
Parameter:	Text					
Format:	Character					
Value:	Т					

Figure 2.6.3.1.2: Example to read the description. It is "T" (Temperature).

2.6.3.2 Selecting the Physical Unit for PMC6

In register 2408, the available physical units of PMC6 are defined.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
2408	2	Available physical units of PMC6	3, 4	U/A/S	none
Figuro 2.6	2 2 1 · Dofinitia	on of register 2408			

Figure 2.6.3.2.1: Definition of register 2408.

Command: P	MC6 available units	Modbus address:	2408	Length: 2	Туре: 3	Read
Parameter:	Units					
Format:	Hex					
Value:	0x0E					

Figure 2.6.3.2.2: Example to read the available physical unit for PMC6. K (0x02) + °C (0x04) + °F (0x08), total 0x0E.

In register 2410, the active physical unit of PMC6 can be selected, by choosing one of the physical units that are defined in register 2408.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
2410	2	Selected active physical unit of PMC6	16	none	U/A/S
Eiguro 2.6	2 2 2 Dofinitia	on of register 2/10. Only one hit can be se	+		

Figure 2.6.3.2.3: Definition of register 2410. Only one bit can be set.

Command: PMC6 set unit		Modbus address:	2410	Length: 2	Туре: 16	Write
Parameter:	Unit					
Format:	Hex					
Value:	0x04					

Figure 2.6.3.2.4: Example to set the physical unit of PMC6 to °C (0x04).

Attention:

Changing the physical unit has also an influence on the output of AO1 / AO2, as the same physical unit is active for the analog outputs. All limits of the 4-20 mA analog output have to be redefined after changing the physical unit!

2.6.3.3 Reading the measurement value of PMC6

Start reg.	Num- ber of reg.	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Reg9 / Reg10	Modbus function code	Read access	Write access
2410	10	Selected physical unit	Measure -ment value of PMC6 ⁽¹⁾	Measure -ment status ⁽²⁾	Min allowed value ⁽¹⁾	Max allowed value ⁽¹⁾	3, 4	U/A/S	none

Register 2410 is also used to read the measurement values of PMC6.

Figure 2.6.3.3.1: Definition of register 2410. Measurement value of PMC6.

⁽¹⁾ Value is always in the physical unit defined in register 2410.

⁽²⁾ For definition of the status see chapter 2.6.4. All status bits set to zero means: no problem.

Command: PMC6 read		Modbus	address: 2410	Length: 10 Ty	/pe: 3 Read
Parameter:	Unit	Value	Status	Min limit	Max limit
Format:	Hex	Float	Hex	Float	Float
Value:	0x02	296.2684	0x00	253.15	403.15

Figure 2.6.3.3.2: Example to read register 2410. Physical unit is set to K (0x02), PMC6 is 296.2 (K), Status is 0x00, Min allowed value is 253.15 (K), Max allowed value is 403.15 (K).

For definition of the measurement status see chapter 2.6.4.

You cannot read selectively the registers 3 and 4 for the measurement value only. You have to read the entire length of the command (10 registers) and extract the desired information.

2.6.3.4 Input of an Externally Measured Temperature

Unlike to the VisiFerm DO, this feature is not available for Conducell UPW Arc Sensors.

2.6.4 Definition of the Measurement Status for PMC1 / PMC6

This is the definition of the status registers read in registers 2090 (PMC1) and 2410 (PMC6):

Bit #	Hex code	Description
0 (LSB)	0x01	Temperature out of measurement range (see chapter 2.9.1)
1	0x02	Temperature out of operating range (see chapter 2.9.1)
2	0x04	Calibration status not zero (see chapter 2.8.4)
3	0x08	Warning not zero (see chapter 2.9.3)
4	0x10	Error not zero (see chapter 2.9.4)

Figure 2.6.4.1: Definition of measurement status for Primary Measurement Channels.

2.6.5 Secondary Measurement Channels 1-16

Conducell UPW Arc Sensors do allow access to secondary measurement values (16 in total). The access to the individual SMC depends on the operator level. The available SMC are defined in register 2048 according to the selected operator level (see chapter 2.6.1).

2.6.5.1 Description of SMC

The registers defined here give a plain text ASCII description of each available SMC.

Start	Number of	Reg1 to Reg8	Modbus	Read	Write			
register	registers	16 ASCII characters	function code	access	access			
Address	8	Description of each SMC	3, 4	U/A/S	none			
Eiguro 265	igure 2.6.5.1.1: Definition of registers of Address							

Figure 2.6.5.1.1: Definition of registers at Address

Description	Address	Plain Text (16 ASCII)	Description
SMC1	2464	Resistance 2- El	Resistance of the electrical current line
SMC2	2496	Resistance	Measured Resistance

Figure 2.6.5.1.2: Full list of starting register addresses for the plain text ASCII description of each SMC

Example:

Command: SMC 1 text		Modbus address:	2464	Length: 8	Туре: 3	Read
Parameter:	Text					
Format:	Character					
Value:	Resistance 2- El					

Figure 2.6.5.1.3: Example to read the description of SMC1 at address 2464. It is "Resistance 2- EI".

Note:

Conducell UPW Arc Sensors are so called 2 electrodes contacting conductivity sensors. The conductivity of the measurement solution is determined by driving a current through the two electrodes, and measuring the voltage drop between them. By knowing current and voltage drop, the sensor calculates the "Resistance" of the measured solution by applying Ohm's law. The value of the "Resistance" is used by the sensor to calculate the conductivity by means of the cell constant.

The "Resistance 2-EI" is the resistance, which includes the resistance of the electrical lines for the current from the electronics to the electrodes inside the sensor. The electrical lines for the current from the electronics to the electrodes are separated from those which are used for the measurement of the voltage drop.

The "Resistance" and the "Resistance 2-EI" allow monitoring completely the integrity of the internal connections of the electrodes and the electronics. Thereby, the "Resistance 2-EI" is used for diagnosis only. Only operator S can read this value.

2.6.5.2 Reading the measurement value of SMC

Start reg.	Num- ber of reg.	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus function code	Read access	Write access
Address	6	Physical unit	Measurement value of kISMC	Standard deviation	3, 4	U/A/S	none

The registers defined here are used to read the measurement values of each SMC.

Figure 2.6.5.2.1: Definition of register at Address. Measurement value of each SMC.

Description	Address	Text	Unit	Min value	Max value
SMC1	2472	Resistance 2- El	kOhm	0.000'22	31'000
SMC2	2504	Resistance	kOhm	0.000'22	21'000
Figure 0.0.5.0.0. Full list of register existences for the measurement values of CMO4 to CMO9					

Figure 2.6.5.2.2: Full list of register addresses for the measurement values of SMC1 to SMC9.

Example:

Command: S	nd: SMC1 read Modbus		address: 2472	Length: 6	Туре: 3	Read
Parameter:	Unit	Value	Standard dev.			
Format:	Hex	Float	Float			
Value:	0x4000	29.14372	0			

Figure 2.6.5.2.3: Example to read register 2472. Physical unit is kOhm (0x4000), the measurement value of SMC1 is 29.14 kOhm, standard deviation of SMC1 is 0 kOhm

2.7 Configuration of the Measurement

This chapter describes the configuration of PMC1 and PMC6 by means of measurement parameters (PA).

2.7.1 Available Parameters

In register 3072, all available parameters (PA) are given.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
3072	2	Available parameters (see Figure 2.7.1.2)	3, 4	U/A/S	none
Figure 2.7.	1.1: Definition	of register 3072.			

Bit #	Hex value	Description	Definition in Conducell Arc Sensors
0 (LSB)	0x0001	PA1	not available
1	0x0002	PA2	not available
2	0x0004	PA3	T comp. temp
3	0x0008	PA4	T comp. factor
4	0x0010	PA5	not available
			not available
7	0x0080	PA8	not available
8	0x0100	PA9	Moving average
9	0x0200	PA10	USP function
10	0x0400	PA11	not available
			not available
15 (MSB)	0x8000	PA16	not available

Figure 2.7.1.2: Bitwise definition of parameters PA1 to PA16, valid for Conducell UPW Arc Sensors

Command: Available parameters		Modbus address:	3072	Length: 2	Туре: 3	Read
Parameter:	Measurement					
	parameters					
Format:	Hex					
Value:	0x030C					

Figure 2.7.1.3: Example to read the available parameters. The value 0x030C corresponds to 0x0200 (PA10) + 0x0100 (PA9) + 0x08 (PA4) + 0x04 (PA3). Parameter 3, 4, 9 and 10 are available.

General note:

- PA1 to PA8 use FLOAT as data format for its values
- PA9 to PA16 use UNSIGNED INT as data format for its values.

2.7.2 PA3: Temperature Compensation Reference Temperature

See chapter 2.7.3 for a detailed explanation of the temperature compensation reference temperature.

2.7.2.1 Description of PA3 (Temperature compensation reference temperature)

In register 3168, a plain text ASCII description of PA3 is given.

Start	Number of	Reg1 to Reg8	Modbus	Read	Write		
register	registers	16 ASCII characters	function code	access	access		
3168	8	Description of PA3	3, 4	U/A/S	none		
Figure 2.7	igure 2.7.2.1.1: Definition of register 3456						

Figure 2.7.2.1.1: Definition of register 3456.

Command: T comp temp text		Modbus address:	3168	Length: 8	Туре: 3	Read
Parameter:	Text					
Format:	Character					
Value:	T comp. temp					

Figure 2.7.2.1.2: Example to read the description for "T comp. temp".

2.7.2.2 Selecting the Physical Unit and Writing the Value for PA3

In register 3176, the available physical units for PA3 are defined.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write			
register	registers	(bitwise defined)	function code	access	access			
3176	2	Available physical units for PA3	3, 4	U/A/S	none			
Figure 2.7	Figure 2.7.2.2.1: Definition of register 3176							

Figure 2.7.2.2.1: Definition of register 3176.

Command: T comp temp units		Modbus address:	Modbus address: 3176		Туре: 3	Read
Parameter:	Units					
Format:	Hex					
Value:	0x04					

Figure 2.7.2.2.2: Example to read the available physical units for PA3. The only one available here is "°C" (0x04). For the definition of the physical units see chapter 2.6.1.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers	(bitwise defined)		function code	access	access
3178	4	Select physical unit for PA3	Value for PA3 (20-25) (Float)	16	none	S

Figure 2.7.2.2.3: Definition of register 3178. Only one bit for the physical unit can be set. PA3 can be set to values of 20 or 25 °C.

By writing to register 3178 the active physical unit for PA3 can be selected, by choosing one of the physical units that are defined in register 3176. The value of the parameter can be set as well.

Command: T	comp temp	Modbus address: 317		Length: 4	Type: 16	Write
Parameter:	Unit	Value				
Format:	Hex	Float				
Value:	0x04	20				

Figure 2.7.2.2.4: Example to set the physical unit of PA9 to "°C" (0x04) and the value of the temperature compensation temperature to 20 °C.

2.7.2.3 Reading all Values for PA3

By reading register 3178, the active physical unit of measurement, the selected value, and the min and max values can be read.

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Modbus function code	Read access	Write access
3178	8	Physical unit	Current value	Min value	Max value	3, 4	U/A/S	none

Figure 2.7.2.3.1: Definition of register 3178.

Command: T	comp temp	Modbus address:	3178	Length: 8	Туре: 3	Read
Parameter:	Unit	Value	Min va	alue	Max value	
Format:	Hex	Float	Float		Float	
Value:	0x04	25	20		25	

Figure 2.7.2.3.2: Example to read PA4. The physical unit is 0x04 ("°C"), the currently active value is 25, and the limits are 20 to 25.

2.7.3 PA4: Temperature Compensation Factor

It is a matter of fact that the conductivity of a solution depends on temperature. The root cause is the temperature dependency of both the ion mobility and the viscosity of a given measurement solution. This temperature dependency is normally expressed as relative change per °C (linearized). Below some typical values for aqueous solutions :

- 1.5 %/°C for concentrated, aqueous solutions
- 2.3 %/°C for low concentrated aqueous solutions
- 5.2 %/°C for ultrapure water

Conducell UPW Arc Sensors allow to calculate the conductivity of a solution, measured at a given temperature, to a hypothetical conductivity at a reference temperature (PA3, 20°C or 25°C). This is useful for comparing conductivity values, measured at different temperatures and different moments in time.

In order to allow a correct calculation to 20°C respectively 25°C, one has to know the exact temperature dependency of the solution to be measured. PA4 allows to set the temperature compensation factor of the measurement solution as a linear approximation. The unit of PA4 is %/°C. Values can be entered between 0 (no compensation) and 10 %/°C.

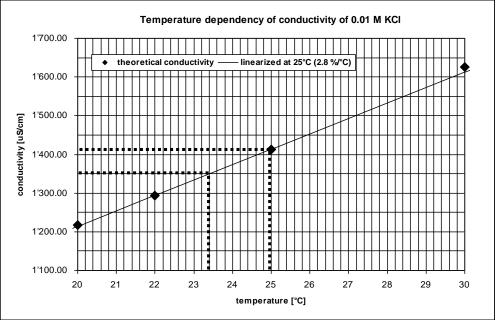


Figure 2.7.3.1: Temperature dependency of a KCI-solution having a concentration of 0.01 M. The dots are the theoretical values from literature. The line shows the linear approximation having a slope of 2.8 %/°C (linearization calculated at 25°C).

The Conducell UPW Arc Sensor is immersed in 0.01 M KCl solution. The sensor reports for PMC6 a temperature of 23.4°C. According to Figure 2.7.3.1, the expected conductivity at this temperature is 1349 μ S/cm.

- with PA4 set to zero, the measurement value at PMC1 is reported as 1349.88 μS/cm. This is the effective conductivity measurement of the sensor at 23.4 °C.
- with PA4 set to 2.8 %/°C (which is the linearized temperature dependency of the KCI-solution used), the measurement value at PMC1 is reported as 1412.94 μS/cm. This is the hypothetical conductivity at the reference temperature of 25°C. The calculated hypothetic value is very close to the theoretical value of 1413 μS/cm at 25°C.

Remember:

Example:

 If the operator wants to read the conductivity at the effective temperature, PA4 has to be set to zero

- If the operator wants to read the hypothetical conductivity at 25°C, PA4 has to be set to the correct temperature compensation factor.
- If USP function is active, the temperature compensation factor is reset to zero and cannot be set to another value until the USP function is turned off.

2.7.3.1 Description of PA4 (Temperature compensation factor)

In register 3456, a plain text ASCII description of PA4 is given.

Start	Number of	Reg1 to Reg8	Modbus	Read	Write
register	registers	16 ASCII characters	function code	access	access
3200	8	Description of PA4	3, 4	U/A/S	none
Figure 0.7	2 1 1 Definiti	an of register 2456	•		

Figure 2.7.3.1.1: Definition of register 3456.

Command: Temp comp fact text		Modbus address:	Modbus address: 3200		Туре: 3	Read
Parameter:	Text					
Format:	Character					
Value:	T comp. factor					

Figure 2.7.3.1.2: Example to read the description for "T comp. factor ".

2.7.3.2 Selecting the Physical Unit and Writing the Value for PA4

In register 3208, the available physical units for PA4 are defined.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
3208	2	Available physical units for PA4	3, 4	U/A/S	none
Eiguro 27	2 2 1 Dofiniti	on of register 2208			

Figure 2.7.3.2.1: Definition of register 3208.

Command: T	emp comp fact av. units	Modbus address:	3208	Length: 2	Туре: 3	Read
Parameter:	Units					
Format:	Hex					
Value:	0x04000000					

Figure 2.7.3.2.2: Example to read the available physical units for PA4. The only one available here is "%/°C" (0x04000000). For the definition of the physical units see chapter 2.6.1.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers	(bitwise defined)		function code	access	access
3210	4	Select physical unit for PA4	Value for PA4 (0-10)	16	none	S
			(Float)			

Figure 2.7.3.2.3: Definition of register 3210. Only one bit for the physical unit can be set. PA4 can be set to values between 0 and 10 %/°C.

By writing to register 3210, the active physical unit for PA4 can be selected, by choosing one of the physical units that are defined in register 3208. The value of the parameter can be set as well.

Command: T	emp comp fact	Modbus address: 3210		Length: 4	Туре: 16	Write
Parameter:	Unit	Value				
Format:	Hex	Float				
Value:	0x04000000	2.3				

Figure 2.7.3.2.4: Example to set the physical unit of PA9 to "%/°C" (0x04000000) and the value of the temperature compensation factor to 2.3.

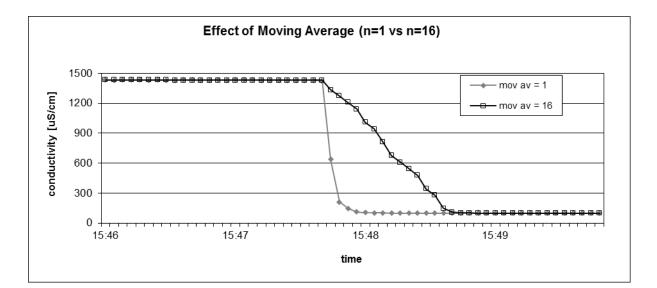
2.7.3.3 Reading all Values for PA4

By reading register 3210, the active physical unit of measurement, the selected value, and the min and max values can be read.

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Modbus function code	Read access	Write access
3210	8	Physical unit	Current value	Min value	Max value	3, 4	U/A/S	none

Figure 2.7.3.3.1: Definition of register 3210.

Command: T	emp comp fact	Modbus address:	3210	Length: 8	Туре: 3	Read
Parameter:	Unit	Value	Min va	lue	Max value	
Format:	Hex	Float	Float		Float	
Value:	0x04000000	2.3	0		10	


Figure 2.7.3.3.2: Example to read PA4. The physical unit is 0x04000000 ("%/°C"), the currently active value is 2.3, and the limits are 0 to 10.

2.7.4 PA9: Moving Average

The Conducell UPW Arc Sensor provides new conductivity readings every 3 seconds. One has the possibility to smoothen the conductivity reading (PMC1) by means of a moving average applied to the 3-seconds-readings.

PA9 can be applied on 1 to 16 3-seconds-readings. The default value is 2.

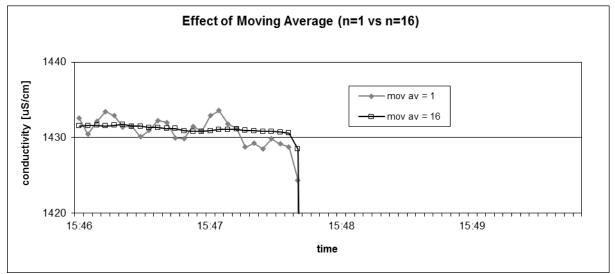


Figure 2.7.4.1: Comparison of the response of a Conducell UPW Arc Sensor to a change from a conductivity standard having nominally 1413 μS/cm (25°C) to a conductivity standard having nominally 100 μS/cm (25°C), using no moving average (n=1) or a moving average over 16 3-seconds-readings.

Using moving average, the short term signal stability can be improved; on the other hand, the response time of the sensor increases with increasing moving average. A moving average over 16 samples results in a response time of at least 48 s.

Note:

• PA9 is applied to both PMC1 and PMC6.

2.7.4.1 Description of PA9 (Moving Average)

In register 3360, a plain text ASCII description of PA9 is given.

Start	Number of	Reg1 to Reg8	Modbus	Read	Write
register	registers	16 ASCII characters	function code	access	access
3360	8	Description of PA9	3, 4	U/A/S	none
Figure 2.7.4	4.1.1: Definition	on of register 3360.			

Figure 2.7.4.1.1: Definition of register 3360.

Command: M	loving average text	Modbus address:	3360	Length: 8	Туре: 3	Read
Parameter:	Text					
Format:	Character					
Value:	Moving average					

Figure 2.7.4.1.2: Example to read the description for "Moving average".

2.7.4.2 Selecting the Physical Unit and Writing the Value for PA9

In register 3368, the available physical units for PA9 are defined.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
3368	2	Available physical units for PA9	3, 4	U/A/S	none
Eiguro 27	1.2.1. Dofiniti	on of register 2269			

Figure 2.7.4.2.1: Definition of register 3368.

Command: N	loving average av. units	Modbus address:	3368	Length: 2	Туре: 3	Read
Parameter:	Units					
Format:	Hex					
Value:	0x01					

Figure 2.7.4.2.2: Example to read the available physical units for PA9. The only one available here is "none" (0x01). For the definition of the physical units see chapter 2.6.1.

Start register	Number of registers	Reg1 / Reg2 (bitwise defined)	Reg3 / Reg4	Modbus function code	Read access	Write access
3370	4	Select physical unit	Value for PA9 (1-16_default: 2)	16	none	S

Figure 2.7.4.2.3: Definition of register 3370. Only one bit for the physical unit can be set. PA9 can be set to the value 1-16. A value of 1 does not influence the response time of the sensor, a value of 16 increases the response time of the sensor to 48 s.

By writing to register 3370 the active physical unit for PA9 can be selected by choosing one of the physical units that are defined in register 3368. The value of the parameter can be set as well.

Command: Moving average		Modbus address:	3370	Length: 4	Type: 16	Write
Parameter:	Unit	Value				
Format:	Hex	Decimal				
Value:	0x01	12				

Figure 2.7.4.2.4: Example to set the physical unit of PA9 to "none" (0x01) and the value of the moving average to 12.

2.7.4.3 Reading all Values for PA9

By reading register 3370, the active physical unit of measurement, the selected value, and the min and max values can be read.

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Modbus function code	Read access	Write access
3370	8	Physical unit	Current value	Min value	Max value	3, 4	U/A/S	none

Figure 2.7.4.3.1: Definition of register 3370.

Command: M	loving average	Modbus address:	3370	Length: 8	Туре: 3	Read
Parameter:	Unit	Value	Min va	lue	Max value	
Format:	Hex	Decimal	Decim	al	Decimal	
Value:	0x01	10	1		16	

Figure 2.7.4.3.2: Example to read PA9. The physical unit is 0x01 ("none"), the value is 10 and the limit is 1 to 16.

2.7.5 PA10: USP Function

The Conducell UPW Arc Sensor provides a USP (US pharmacopeia) function. When the function is activated, a USP warning and an USP alarm is generated if the conditions are fulfilled.

The USP function value can be set from 0 to 100 as integer values.

- 0: USP function is deactivated
- 1-99: USP warning active if value exceeds the set percentage of the limit for the alarm.
- 100: USP warning deactivated, only USP alarm active

Temperature Rang	e in °C	Limit conductivity µS/cm
from	to	
0	5	0.6
5	10	0.8
10	15	0.9
15	20	1
20	25	1.1
25	30	1.3
30	35	1.4
35	40	1.5
40	45	1.7
45	50	1.8
50	55	1.9
55	60	2.1
60	65	2.2
65	70	2.4
70	75	2.5
75	80	2.7
80	85	2.7
85	90	2.7
90	95	2.7
95	100	2.9
100		3.1

Figure 2.7.5.1: The USP limit table for the conductivity according to the temperature.

Examples:

- T = 23° C -> USP limit = 1.1μ S/cm. The USP function value is set to 50:
 - conductivity below 0.55µS/cm ->no warning is given,
 - conductivity between 0.55 and 1.1µS/cm -> the USP warning is set,
 - conductivity is above 1.1µS/cm -> the USP alarm is set.

T = 12° C -> USP limit = 0.9μ S/cm; USP function value is set to 0:

• No matter what conductivity, neither the alarm nor the warning will be active.

T = 12° C -> USP limit = 0.9μ S/cm; USP function value is set to 100:

USP warning is never set and USP alarm is set if the conductivity exceeds the value of 0.9µS/cm.

If the USP function value is set ≠0 the temperature compensation factor is automatically set to zero! Both USP warning and USP alarm generate a sensor warning (see chapter 2.9.3). USP warning and USP alarm are cleared if the conductivity falls below the threshold.

2.7.5.1 **Description of PA10 (USP Function)**

In register 3392, a plain text ASCII description of PA10 is given.

Start	Number of	Reg1 to Reg8	Modbus	Read	Write
register	registers	16 ASCII characters	function code	access	access
3392	8	Description of PA10	3, 4	U/A/S	none
Eiguro 27	E 1 1. Dofiniti	an of register 2202			

Figure 2.7.5.1.1: Definition of register 3392.

Command: USP function text		Modbus address: 3360		Length: 8	Туре: 3	Read
Parameter:	Text					
Format:	Character					
Value:	USP function					

Figure 2.7.5.1.2: Example to read the description for "USP function".

2.7.5.2 Selecting the Physical Unit and Writing the Value for PA10

In register 3400, the available physical units for PA10 are defined.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write		
register	registers	(bitwise defined)	function code	access	access		
3400 2 Available physical units for PA10 3, 4 U/A/S none							
Figure 2.7	5 2 1 · Dofinitia	on of register 3/00					

Figure 2.7.5.2.1: Definition of register 3400.

Command: Temp comp fact av. units		Modbus address:	3400	Length: 2	Туре: 3	Read
Parameter:	Units					
Format:	Hex					
Value:	0x01					

Figure 2.7.5.2.2: Example to read the available physical units for PA10. The only one available here is "none" (0x01). For the definition of the physical units see chapter 2.6.1.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers	(bitwise defined)		function code	access	access
3402	4	Select physical unit	Value for PA10	16	none	S
		for PA10	(0-100, default: 90)			

Figure 2.7.5.2.3: Definition of register 3402. Only one bit for the physical unit can be set. PA10 can be set to the value 0-100. A value of 0 deactivates the USP function. A value 1-99 sets the USP function to the corresponding percentage of the warning and the alarm at 100%. A value of 100 deactivates the warning and only sets the alarm if the conductivity exceeds the corresponding value.

By writing to register 3402 the active physical unit for PA10 can be selected by choosing one of the physical units that are defined in register 3400. The value of the parameter can be set as well.

Command: L	JSP function	Modbus address:	3402	Length: 4	Туре: 16	Write
Parameter:	Unit	Value				
Format:	Hex	Decimal				
Value:	0x01	80				

Figure 2.7.5.2.4: Example to set the physical unit of PA10 to "none" (0x01) and the value of the USP function to 80 percent.

2.7.5.3 Reading all Values for PA10

By reading register 3402, the active physical unit of measurement, the selected value, and the min and max values can be read.

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Modbus function code	Read access	Write access
3402	8	Physical unit	Current value	Min value	Max value	3, 4	U/A/S	none

Figure 2.7.5.3.1: Definition of register 3402.

Command: U	ISP function	Modbus address:	3402	Length: 8	Туре: 3	Read
Parameter:	Unit	Value	Min va	alue	Max value	
Format:	Hex	Decimal	Decim	nal	Decimal	
Value:	0x01	90	0		100	

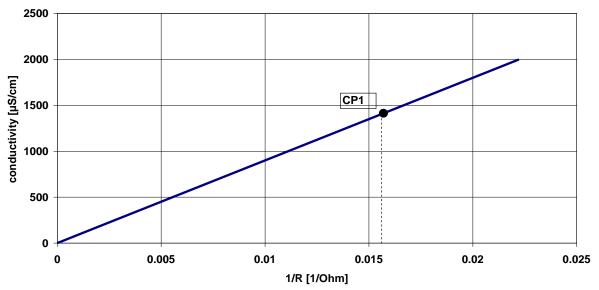
Figure 2.7.5.3.2: Example to read PA10. The physical unit is 0x01 ("none"), the value is 90 and the limit is 0 to 100.

2.8 Calibration

2.8.1 Available Calibration Points

In register 5120, the available number of Calibration Points (CP) for Primary Measurement Channel 1 (PMC1) is defined. 8 individual CP are theoretically possible, however, Conducell UPW Arc Sensors are using only CP1 and CP6.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
5120	2	Available number of CP for PMC1	3, 4	U/A/S	none
		(see Figure 2.8.1.2)			


Figure 2.8.1.1: Definition of register 5120.

Bit #	Hex value	Description	Definition in Arc Sensors
0 (LSB)	0x01	CP1	Calibration Point 1
1	0x02	CP2	not available
			not available
5	0x20	CP6	Product Calibration
6	0x40	CP7	not available
7 (MSB)	0x80	CP8	not available

Figure 2.8.1.2: Bitwise definition of CP1 to CP8.

Command: Available cali points		Modbus address:	Modbus address: 5120		Туре: 3	Read
Parameter:	Points					
Format:	Hex					
Value:	0x21					

Figure 2.8.1.3: Example to read the available CPs. 0x21 = 0x01 (CP1) + 0x20 (CP6).

Standard Calibration Conducell PW ARC Sensors

Figure 2.8.1.4: Conducell UPW Arc Sensors allow 2 calibration points: CP1 is used for standard calibration (shown in this figure). The calibration curve is a 1-point calibration defined by CP1, with zero offset. The slope of the curve is called the cell constant. The product calibration CP6 is used to adjust the standard calibration function to specific process conditions (the effect of CP6 is shown in Figure 2.8.3.2.1).

2.8.2 Definitions of Calibration Points

2.8.2.1 Calibration Point 1 (Standard Calibration)

The limits for the calibration point 1 are defined in register 5152.

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus function code	Read access	Write access
5152	6	Physical unit currently active for CP1	Min value for CP1 (in the physical unit as defined in Reg1 and 2)	Max value for CP1 (in the physical unit as defined in Reg1 and 2)	3, 4	U/A/S	none

Figure 2.8.2.1.1: Definition of register 5152 for CP1.

Attention:

The available physical units for conductivity are defined in register 2088 (see chapter 2.6.2.2) and are as follows: μ S/cm, mS/cm, kOhm, MOhm. The physical unit defined in 5152 and 5312 for CP1 and CP6 is linked to the physical unit defined for PMC1 in register 2090. However, perform calibrations only when register 2088 is configured to μ S/cm or mS/cm.

Command: Calibration limits CP1 Modbus address: 5		5152	Length: 6	Туре: 3	Read	
Parameter:	Unit	Min value	Max v	alue		
Format:	Hex	Float	Float			
Value:	0x0400	0	0			

Figure 2.8.2.1.2: Example to read the limits of CP1. Currently active physical unit is mS/cm (0x0400). The min and max values are both 0, indicating, that calibration at CP1 can be performed only using defined calibration standards having discrete conductivity values.

When initiating the calibration at CP1, the measured conductivity and temperature have to be stable for at least 3 minutes. The stability criteria are defined in register 5128:

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers	(Float)	(Float)	function code	access	access
5128	4	Max drift PMC1	Max drift PMC6	3, 4, 16	U/A/S	S
		conductivity	temperature			
		[%/min]	[K/min]			

Figure 2.8.2.1.3: Definition of register 5128.

Command: R	ead calibration stability	Modbus address:	5128	Length: 4	Туре: 3	Read
Parameter:	Max drift	Max drift				
	conductivity [%/min]	temperature [K/min]				
Format:	Float	Float				
Value:	10	0.5				
E . 0.0.0.1	4 E					

Figure 2.8.2.1.4: Example to read the calibration stability.

et calibration stability	Modbus address: 5128	Length: 4	Type: 16	Write
Max drift	Max drift			
conductivity [%/min]	temperature [K/min]			
Float	Float			
0.2	0.5			
	conductivity [%/min] Float	Max drift conductivity [%/min]Max drift temperature [K/min]FloatFloat	Max drift Max drift conductivity [%/min] temperature [K/min] Float Float	Max drift Max drift conductivity [%/min] temperature [K/min] Float Float

Figure 2.8.2.1.5: Example to set the calibration stability.

The stability criteria defined in register 5128 is valid for CP1 only, but NOT for CP6.

2.8.2.2 Calibration Point 6 (Product Calibration)

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus	Read	Write
register	registers				function code	access	access
5312	6	Physical unit	Min value for	Max value for	3, 4	U/A/S	none
		currently	CP6 (in the	CP6 (in the			
		active for	physical unit	physical unit			
		CP6	as defined in	as defined in			
			Reg1 and 2)	Reg1 and 2)			

The limits for calibration point 6 are given in register 5312.

Figure 2.8.2.2.1: Definition of register 5312 for CP6.

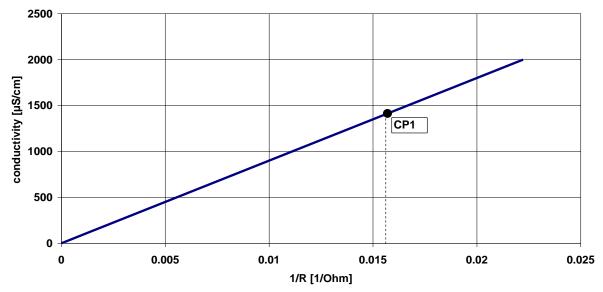
Command: C	alibration limits CP6	Modbus address:	5312	Length: 6	Туре: 3	Read
Parameter:	Unit	Min value	Max v	alue		
Format:	Hex	Float	Float			
Value:	0x0400	0.000001	2.5			

Figure 2.8.2.2.2: Example to read the limits of CP6. The active physical unit is mS/cm (0x0400), the min value is 0.000'001 mS/cm and the max value is 2.5 mS/cm. Note: the definition of min and max is different than the one for CP1, because CP6 can be set to any conductivity value.

Command: C	alibration limits CP6	Modbus address:	5312	Length: 6	Туре: 3	Read
Parameter:	Unit	Min value	Max va	alue		
Format:	Hex	Float	Float			
Value:	0x0200	0.001	2500			

Figure 2.8.2.2.3: Example to read the limits of CP6. The active physical unit is μS/cm (0x0200), the min value is 0.001 μS/cm and the max value is 2'500 μS/cm.

A cell constant which deviates more than 10% from the factory cell constant must be questioned.



2.8.3 Calibration Procedure

2.8.3.1 Calibration at CP1 (Standard Calibration)

The Arc Sensor family has a unique calibration routine. When initiating the calibration, the data set of the sensor is automatically traced back within the last 3 minutes. A decision is made immediately if the calibration is successful or not. The operator therefore gets an immediate result. The criteria for a successful calibration are:

- the stability of conductivity value and temperature over the last 3 minutes (see register 5128)
- the currently measured conductivity value fits to one of the calibration standards defined in the selected set of calibration standards
- the limits for the cell constant have to be met

Standard Calibration Conducell PW ARC Sensors

Figure 2.8.3.1.1: Standard Calibration using CP1.

CP1 defines a linear relationship between the measured conductance (1/R) and the conductivity of the sample. As the linear curve has no offset, the function is fully described by the slope, the so-called cell constant. This value is stored in register 5448.

Notes:

- In order to perform a standard calibration at CP1, it is necessary to use commercially available calibration standards. The operator is restricted to use those standards that are defined in the six sets of calibration standards (see chapter 2.8.11).
- There are two ways of performing a standard calibration:
 - Standard calibration with automatic recognition of the calibration standard: In this case, the sensor detects on itself in what calibration standard it is immersed. The criterion to decide on is the electrical conductance measured. The sensor checks the list of calibration standards that are available for automatic recognition (see chapter 2.8.11)
 - standard calibration with **manual selection** of the calibration standard: the operator is selecting the calibration standard in which the sensor is immersed.
- Factory calibration is 1413 µS/cm at CP1.

Standard Calibration with Automatic Recognition of the Standard

defined for the individual calibration standards in this list.

Prior to calibration, the specialist selects - for each set of calibration standards - a list of calibration standards allowed for automatic recognition (register 9530). When the calibration is initiated, the sensor screens this list of allowed calibration standards and checks if the currently measured electrical conductance is within the allowed range of conductance,

If the sensor finds a corresponding calibration standard, the nominal conductivity value of the specific calibration standard is assigned to the currently measured electrical conductance. The temperature dependency of the calibration standard is considered during the assignment.

If the sensor does not find any corresponding calibration standard, the bit representing the corresponding status "no matching calibration standard" is set in the calibration status register.

Note that only the nominal value of the calibration standard is used for calibration. The actual value of the calibration solution, which may deviate from the nominal value, is not taken into account and cannot be set by the operator.

Standard Calibration with Manual Selection of the Calibration Standard

If the operator knows in what calibration standard the sensor is immersed, he can initiate the calibration procedure by means of setting the conductivity value to the actual value of the calibration standard. The sensor now screens the list of calibration standards that are allowed for manual selection (register 9530). If the conductivity value entered by the operator fits in the allowed conductivity range of one of the allowed calibration standards, the entered conductivity value is assigned to the currently measured electrical conductance. The temperature dependency of the calibration standard is considered during the assignment.

If the sensor does not find any corresponding calibration standard, the bit representing the corresponding status "no matching calibration standard" is set in the calibration status register.

Note: using manual selection only, the actual conductivity value of the calibration standard can be set. However, the actual value must be within the given tolerance of the standard in use, e.g. ±1%.

Perform the following steps to do a standard calibration at CP1:

Step 1: Select the desired set of calibration standards (see chapter 2.8.11)

Step 2: Immerse the sensor into one of the calibration standards available in the selected set

Attention: It is important that the Conducell UPW Arc Sensor is immersed in a defined calibration standard at least 3 minutes BEFORE the calibration is started.

Step 3: Choose calibration point CP1.

Step 4: Start the calibration (automatic recognition or manual selection)

The calibration is initiated at CP1 by writing to register 5162.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
5162	2	Conductivity value of the calibration standard (25°C) at CP1 (unit as defined in register 5152)	16	none	A/S

Figure 2.8.3.1.2: Definition of register 5162. You have two options to enter the conductivity value: Automatic recognition: conductivity value=0: the sensor tries to assign the measured electrical conductance to one of the calibration standards available for automatic calibration.

Manual selection: enter the actual conductivity value at 25°C (the value must be within the tolerance range of the nominal value of one of the calibration standards available for manual selection).

It is important to enter the conductivity value of the standard at 25°C. Note the difference to calibration at CP6!

Step 5: Read the calibration status (see chapter 2.8.4)

Step 6: Check the Conducell UPW Arc Sensor's quality indicator

Examples: (Definition of register 5158 used in these examples is given in chapter 2.8.4.1, the one for register 4872 in chapter 2.9.6)

Example to calibrate at CP1 with automatic recognition:

Command: N	lake calibration CP1	Modbus address:	5162	Length: 2	Туре: 16	Write
Parameter:	conductivity value					
Format:	Float					
Value:	0					

Figure 2.8.3.1.3: Example to start the calibration at CP1, setting a value of 0 for automatic recognition of the calibration standard. The sensor is immersed in a 0.055 µS/cm calibration standard (pure water).

Example to read the calibration status of CP1 (see definition in chapter 2.8.4):

Command: C	alibration status CP1	Modbus address:	5158	Length: 6	Туре: 3	Read
Parameter:	Status	Unit	Value			
Format:	Hex	Hex	Float			
Value:	0x0000000	0x00000200	0.055			

Figure 2.8.3.1.4: Example to read the calibration status of CP1 after calibration with automatic recognition (0=auto) at CP1. All bits of CP1 are zero (0x00000000), indicating that the calibration was successful. The physical unit of the last calibration is μS/cm (0x0000200) and the nominal value of the assigned conductivity standard is 0.055 μS/cm (at 25°C).

Example to calibrate at CP1 with manual selection of the calibration standard:

Command: N	lake calibration CP1	Modbus address:	5162	Length: 2	Туре: 16	Write
Parameter:	conductivity value					
Format:	Float					
Value:	5.01					

Figure 2.8.3.1.5: Example to start the calibration at CP1, by means of manually selecting the calibration standard 5 (nominal value 5 μS/cm). The operator knows from the certificate of the specific production lot that the actual conductivity value is 5.01 μS/cm.

Example to read the calibration status of CP1:

Command: C	alibration status CP1	Modbus address	5158	Length: 6	Туре: 3	Read
Parameter:	Status	Unit	Value			
Format:	Hex	Hex	Float			
Value:	0x0000000	0x00000200	5.01			

Figure 2.8.3.1.6: Example to read the calibration status of CP1 after calibration CP1 at 5.01 μ S/cm using manual selection. All bits of CP1 are zero (0x0000000), indicating that the calibration was successful. The physical unit of the last calibration is μ S/cm (0x0000200) and the assigned conductivity standard is 5.01 μ S/cm (this is the actual value of the conductivity standard at 25°C).

Example to read the sensor's quality indicator:

Command: C	Quality indicator	Modbus address: 4872	Length: 2	Туре: 3	Read
Parameter:	Quality [%]				
Format:	Float				
Value:	100				

Figure 2.8.3.1.7: Example to read the sensor's quality indicator.

2.8.3.2 Calibration at CP6 (Product Calibration)

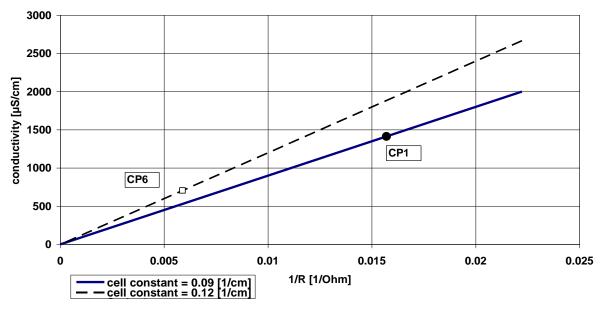
The product calibration is a process in order to adjust the measurement of a correctly calibrated Conducell UPW Arc Sensor to specific process conditions. Product calibration is a two stage process:

1. An initial measurement is performed while the operator takes a sample of the process solution. At that time point the Conducell UPW Arc Sensor stores its raw measurement value, temperature and operating hour in the memory.

While the operator takes the sample to the analytics lab for reference analysis the Conducell UPW Arc Sensor is still running on its prior standard calibration (CP1) while the initial measurement data for the ongoing product calibration is kept in the sensor's memory.

2. When the result of the reference analysis is available this value is assigned, at a second time point, to the former initial measurement data stored in the Conducell UPW Arc Sensor.

The sensor is now, after valid assignment, running with a calibration function which is adapted to the correct process conditions. The product calibration (CP6) is now active.


Performing the Cancel command for the product calibration (CP6) brings the sensor back to its still stored standard calibration (CP1).

If a product calibration is still active and a standard calibration (CP1) is performed the product calibration (CP6) is cancelled.

If the operator needs to overrun an active product calibration (old CP6) by a new product calibration (new CP6) the above process applies in the same way. After initial measurement the Conducell UPW Arc Sensor is still running on the first product calibration (old CP6) until a valid assignment has been done (new CP6).

What happens to the Conducell UPW Arc Sensor's calibration function upon product calibration (CP6)? A product calibration has the same impact as CP1. The only difference is that the conductivity value of CP6 can be set to almost any desired value. CP1 is restricted to values that are defined by the set of calibration standards stored in the sensor.

Product Calibration Conducell PW ARC Sensors

Figure 2.8.3.2.1: Effect of the product calibration CP6 on an existing standard calibration function defined by CP1.

The operator starts with a standard calibration with calibration point CP1:

CP1: conductivity value of calibration standard: 1413 µS/cm

The sensor internally calculates the calibration function, using the calibration point **CP1**. The resulting calibration function, compensated to the standard temperature 25°C, is shown as a straight line. The calibration function is described by one single parameter: the cell constant. Some weeks later, the operator believes that the standard calibration function is not correct anymore. As the process is running and he is not able to perform a standard calibration under defined conditions in the lab, he decides to perform a product calibration CP6, in other words adjusting the standard calibration function to the process conditions:

CP6: conductivity value of product: 706 µS/cm

The sensor internally calculates a new cell constant. Accordingly, the slope of the calibration function is changed (dashed line).

Another special feature of this calibration point is to switch off and back on again a product calibration. These functions are called "restore standard calibration" and "restore product calibration".

Note:

The sensor's internal criteria for a successful product calibration are:

- the sensor is currently in an environment corresponding to the Conducell UPW Arc Sensors measurement range.
- the manually assigned conductivity value does not deviate more than 70 % from the value measured prior to product calibration.

The different functionalities of the product calibration procedure (CP6) are accessible through the following sensor commands:

- Initial measurement
- Assignment
- Cancel
- Restore standard calibration
- Restore product calibration

All commands are executed by writing a command value to the register 5340 except for assignment where the calibration value is written to register 5322 (see below).

Definition of the commands for product calibration

The commands for register 5340 are defined as follows:

Code Hex	Definition of commands
0x01	Perform initial measurement
0x02	Cancel an active product calibration
0x03	Restore a standard calibration from an active product calibration
0x04	Restore a product calibration from an active standard calibration
	P. Definition of the commands related to the product calibration

Figure 2.8.3.2.2: Definition of the commands related to the product calibration

register registers function		
	on code access	access
5340 2 Code as defined in Figure 2.8.3.2.2 3, 4, 1	6 A/S	A/S

Figure 2.8.3.2.3: Definition of register 5340

2.8.3.2.1 Product calibration: Initial measurement

Upon process sample collection for laboratory analysis the command for initial measurement is sent to the sensor.

This is achieved by writing the command 0x01 to register 5340 which performs the initial measurement and stores the corresponding measurement values in the sensor.

Command: C	P6: Initial measurement	t Modbus address:	5340	Length: 2	Type: 16	Write
Parameter:	Command					
Format:	Hex					
Value:	0x01					

Figure 2.8.3.2.1.1: Example to start the product calibration procedure. Writing the command code 0x01 (initial measurement) to the CP6 command register 5340.

After successful initial measurement the corresponding calibration status (register 5318, Figure 2.8.4.2.1) is "CP6 initial measurement" (0x08000000) (see Figure 2.8.4.1.1). The sensor continues measuring using the prior standard calibration.

2.8.3.2.2 Product calibration: Assignment

After successful initial measurement a correct value must be assigned to the initially stored measurement data.

This is achieved by writing the correct calibration value to register 5322.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
5322	2	Conductivity value (in the physical unit	16	none	A/S
		given in 5312)			

Figure 2.8.3.2.2.1: Definition of register 5322

Command: CP6: Assignment		Modbus address:	5322	Length: 2	Type: 16	Write
Parameter:	Value					
Format:	Float					
Value:	1.5					

Figure 2.8.3.2.2.2: Example to assign a calibration value to the above performed initial measurement. This is achieved by writing the correct conductivity value of 1.5 (μS/cm).

From now on the sensor is measuring using the here performed product calibration.

The calibration status (register 5318) is 0x14000000 meaning that a correct value has been assigned and that the product calibration is active (see Figure 2.8.4.1.1).

Attention: The conductivity value to be entered in register 5322 is the conductivity at the effective temperature of the measurement mode, not the conductivity componented to the temperature defined by DA2

the measurement media, <u>not</u> the conductivity compensated to the temperature defined by PA3. The following example shows how confusing this can be:

The sensor is measuring at 22.5°C in 0.01 M KCl solution. PA9 is 2.8 %/°C which is the correct temperature coefficient for this medium. Register 2090 (PMC1) reports 1455.7 μ S/cm which is the hypothetical conductivity at 25°C calculated by the sensor. The operator is not happy with the reading and now enters the theoretical conductivity of 0.01 M KCl at 22.5°C (1315 μ S/cm) as product calibration. PMC1 is now reporting 1415.3 μ S/cm as the hypothetical value at 25°C. It corresponds very well to the theoretical value of 1413 μ S/cm at 25°C. If the operator now sets PA4 to 0 %/°C, PMC1 reports 1317.3 μ S/cm, with other words the conductivity at the effective temperature of 22.5°C.

2.8.3.2.3 Product calibration: Cancel

To cancel an active product calibration or an active initial measurement the command 0x02 is written to register 5340.

Command: CP6: Cancel		Modbus address:	5340	Length: 2	Туре: 16	Write
Parameter:	Command					
Format:	Hex					
Value:	0x02					

Figure 2.8.3.2.3.1: Example to cancel an active product calibration or an initial measurement. Writing the command 0x02 (cancel) to register 5340.

Performing this action the product calibration or any initial measurements are cancelled. The values of the prior product calibration are removed from the sensor's memory. From now on the sensor is measuring using its prior CP1 standard calibration.

The sensor's calibration status (register 5318) will be reading 0x00 again (see Figure 2.8.4.1.1).

2.8.3.2.4 Product calibration: Restore standard calibration

If a product calibration is active this product calibration can be temporarily switched off by writing the command 0x03 to register 5340.

Performing this action the values of the product calibration remain stored in the sensor's memory.

Command: CP6: Restore standard		Modbus address:	5340	Length: 2	Type: 16	Write
Parameter:	Command					
Format:	Hex					
Value:	0x03					

Figure 2.8.3.2.4.1: Example to restore a standard calibration from an active product calibration. Writing command 0x03 (restore standard calibration) to register 5340.

From now on the sensor is measuring using its prior CP1 standard calibration. The sensor's calibration status (register 5318) will be reading "CP6 assigned" (0x1000000) meaning that a valid assignment for a product calibration is available in the sensor's memory (see Figure 2.8.4.1.1).

2.8.3.2.5 Product calibration: Restore product calibration

If a valid but inactivated product calibration is available in the sensors memory, the calibration status is reading "CP6 assigned" (corresponding to 0x10000000, see Figure 2.8.4.1.1), this stored product calibration can be restored or reactivated by writing command 0x04 to register 5340.

Command: CP6: Restore product		Modbus address:	5340	Length: 2	Туре: 16	Write
Parameter:	Command					
Format:	Hex					
Value:	0x04					

Figure 2.8.3.2.5.1: Example to restore an available product calibration from an active standard calibration. Writing command 0x04 (restore product calibration) to register 5340.

From now on the sensor is measuring using its prior CP6 product calibration. The sensors calibration status (register 5318) will be reading 0x14000000 (corresponding to "CP6 assigned" and "CP6 active", see Figure 2.8.4.1.1) again.

If this command is performed without available product calibration in the sensor's memory the sensor will respond with a Modbus exception since this command is not valid.

2.8.4 Reading the Calibration Status

2.8.4.1 Reading the Calibration Status of CP1

A standard calibration is not always successful. In order to analyze what has gone wrong, the calibration status registers 5158 for CP1 can be read:

Bit #	Hex value	Definition
0 (LSB)	0x0000001	CP1: conductivity value below calibration range
1	0x0000002	CP1: conductivity value above calibration range
2	0x0000004	CP1: actual temperature reading is too low
3	0x0000008	CP1: actual temperature reading is too high
4	0x00000010	CP1: temperature reading during calibration is not stable
5	0x0000020	CP1: cell constant is too low (see chapter 2.8.8)
6	0x00000040	CP1: cell constant is too high (see chapter 2.8.8)
7	0x0000080	CP1: conductivity reading during calibration is not stable
		not available
24	0x01000000	CP6: out of calibration range
25	0x02000000	CP6: out of range
26	0x04000000	CP6: active
27	0x0800000	CP6: initial measurement
28	0x10000000	CP6: assigned
		not available
31	0x80000000	CP1: incorrect measurement unit

Figure 2.8.4.1.1: Definition of the status for register 5158 and 5318 (see Figure 2.8.4.1.2 and Figure 2.8.4.2.1).

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus function code	Read access	Write access
5158	6	Status CP1 (see Figure 2.8.4.1.1)	Physical unit of the last successful calibration CP1	Nominal or actual conductivity value of the calibration standard (25°C) of the last successful calibration CP1	3, 4	U/A/S	none

Figure 2.8.4.1.2: Definition of register 5158 for CP1.

Command: C	alibration status CP1	Modbus address:	5158	Length: 6	Туре: 3	Read
Parameter:	Status	Unit	Value			
Format:	Hex	Hex	Float			
Value:	0x0000080	0x00000200	1413			

Figure 2.8.4.1.3: Example to read the calibration status of CP1 after calibration CP1 at 0 = auto. The sensor is immersed in 84 μ S /cm calibration standard. The status message is: "CP1: conductivity reading during calibration is not stable" (0x00000080). The physical unit of the last successful calibration is μ S/cm (0x0200) and the last successful calibration has been performed at 1413 μ S/cm.

Command: Calibration status	CP1 Modbus a	ddress: 5158	Length: 6	Туре: 3	Read
Parameter: Status	Unit	Value			
Format: Hex	Hex	Float			
Value: 0x0000000	0x00000200	84			

Figure 2.8.4.1.4: Example to read the calibration status of CP1, after having repeated the calibration of figure 2.7.4.1.3. The calibration is successful this time, and the new calibration values are reported: the physical unit of the last successful calibration is μS/cm (0x0200) and the last successful calibration has been performed at 84 μS/cm.

(for more examples see also chapter 2.8.3.1)

2.8.4.2 Reading the Calibration Status of CP6 (Product Calibration)

The calibration status and the current state of the product calibration process (CP6) is read in the calibration status register for CP6 (register 5318).

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus function code	Read access	Write access
5318	6	Status CP6 (see Figure 2.8.4.1.1)	Physical unit of the last successful calibration CP6	Conductivity value of the last successful calibration CP6 at the effective temperature	3, 4	U/A/S	none

Figure 2.8.4.2.1: Definition of register 5318 for CP6. For examples, see following chapters.

2.8.4.2.1 Product calibration: Initial measurement

Calibration status after initial measurement command under conditions outside the valid calibration range for CP6 (defined in register 5312):

Command: Calibration status CP6 Mo		Modbus address:	5318	Length: 6	Туре: 3	Read
Parameter:	Status	Unit	Value			
Format:	Hex	Hex	Float			
Value:	0x01000000	0x00000200	110			

Figure 2.8.4.2.1.1: Example to read the calibration status of CP6 after having performed an initial measurement at CP6 under measurement conditions outside the calibration range for CP6 (the sensor was not immersed in solution).

The status says: "CP6: out of calibration range" (0x01000000). The last successful calibration has been performed at 110 μ S/cm.

The initial measurement in this case was not successful.

The sensor is still running on its prior standard calibration.

Calibration status after successful initial measurement:

Command: C	alibration status CP6	Modbus address:	5318	Length: 6	Туре: 3	Read
Parameter:	Status	Unit	Value			
Format:	Hex	Hex	Float			
Value:	0x08000000	0x00000200	110			

Figure 2.8.4.2.1.2: Example to read the calibration status of CP6 after having performed an initial measurement at CP6 under correct measurement conditions (sensor immersed in 84 μS/cm). The status says: "CP6: initial measurement" (0x08000000). The last successful calibration has been performed at 110 μS/cm.

The initial measurement in this case was successful.

The sensor is still running on its prior standard calibration until a valid calibration value has been assigned to this initial measurement values.

2.8.4.2.2 Product calibration: Assignment

Calibration status after invalid assignment:

Command: C	alibration status CP6	Modbus address:	5318	Length: 6	Туре: 3	Read
Parameter:	Status	Unit	Value			
Format:	Hex	Hex	Float			
Value:	0x0A00000	0x00000200	110			

Figure 2.8.4.2.2.1: Example to read the calibration status of CP6 after having performed a valid initial measurement at CP6 and an invalid assignment.

The status says: "CP6: out of range" (0x02000000) and "CP6: initial measurement" (0x08000000). The last successful calibration has been performed at 110 μ S/cm. The initial measurement in this case is still valid and available for further assignment of a product calibration value. The here performed assignment was **not** successful. The sensor remains running on its prior standard calibration.

Calibration status after valid assignment:

Command: C	alibration status CP6	Modbus address:	Modbus address: 5318		Туре: 3	Read
Parameter:	Status	Unit	Value			
Format:	Hex	Hex	Float			
Value:	0x14000000	0x00000200	90			

Figure 2.8.4.2.2.2: Example to read the calibration status of CP6 after having performed an initial measurement at CP6 and a valid assignment to 90 μS/cm.

The status says: "CP6: active" (0x04000000) and "CP6: assigned" (0x10000000). The last successful calibration corresponding to the here performed assignment has been performed at 90 µS/cm.

The here performed assignment was successful. The sensor is running using a valid product calibration.

2.8.4.2.3 Product calibration: Cancel

Calibration status after cancelling an active product calibration:

Command: C	Calibration status CP6	Modbus address: 5318		Length: 6	Туре: 3	Read
Parameter:	Status	Unit	Value			
Format:	Hex	Hex	Float			
Value:	0x0000000	0x00000200	90			

Figure 2.8.4.2.3.1: Example to read the calibration status of CP6 after having performed a cancel command at CP6.

The status reports no messages. The last successful calibration at CP6 has been performed at 90 µS/cm.

The sensor is running on a valid standard calibration and no product calibration is stored.

2.8.4.2.4 Product calibration: Restore standard calibration

Calibration status after restoring a standard calibration from an active product calibration:

Command: C	alibration status CP6	Modbus address:	5318	Length: 6	Туре: 3	Read
Parameter:	Status	Unit	Value			
Format:	Hex	Hex	Float			
Value:	0x1000000	0x00000200	90			

Figure 2.8.4.2.4.1: Example to read the calibration status of CP6 after having restored the standard calibration from an active product calibration (CP6).

The status says: "CP6 assigned" (0x1000000). The last successful calibration at CP6 has been performed at 90 μ S/cm.

The sensor is running on a valid standard calibration but a valid product calibration is still available in the sensor.

2.8.4.2.5 Product calibration: Restore product calibration

Calibration status after restoring an available product calibration from an active standard calibration:

Command: C	Calibration status CP6	Modbus address:	5318	Length: 6	Туре: 3	Read
Parameter:	Status	Unit	Value			
Format:	Hex	Hex	Float			
Value:	0x14000000	0x00000200	90			

Figure 2.8.4.2.5.1: Example to read the calibration status of CP6 after having restored an available product calibration (CP6) from an active standard calibration (CP1).

The status says: "CP6: active" (0x04000000) and "CP6: assigned" (0x10000000). The last successful calibration corresponding to the here performed assignment has been performed at 90 µS/cm.

The sensor is running on a valid product calibration again.

2.8.5 Currently active Calibration Parameters part 1

The examples reported in chapter 2.8.5 to 2.8.8 are a result of:

 standard calibration with manual selection using calibration standard 1413 μS/cm, and defining actual value to 1416 μS/cm. Temperature during calibration is 21.08°C. The selected physical unit is μS/cm.

Command: C	alibration status CP1	Modbus address:	5158	Length: 6	Туре: 3	Read
Parameter:	Status	Unit	Value			
Format:	Hex	Hex	Float			
Value:	0x0000000	0x00000200	1416			

Figure 2.8.5.1: Corresponding status after standard calibration, used as example for chapter 2.8.5 to 2.8.8: Status is successful and the last successful calibration has been performed at 1416 µS/cm.

 product calibration using a measurement solution having a conductivity of 1203 µS/cm at 22.98°C. The selected physical unit is µS/cm.

Command: C	alibration status CP6	Modbus address:	5318	Length: 6	Туре: 3	Read
Parameter:	Status	Unit	Value			
Format:	Hex	Hex	Float			
Value:	0x14000000	0x00000200	1203			

Figure 2.8.5.2: Corresponding status after product calibration, used as example for chapter 2.8.5 to 2.8.8: Status is saying: "CP6: active" (0x04000000) and "CP6: assigned" (0x10000000). The last successful product calibration has been performed at 1203 µS/cm.

In registers 5164 (CP1) and 5324 (CP6) the currently active calibration parameters part 1 are stored. These registers contain the values for temperature, number of calibrations and operating hour upon calibration.

Start register	Number of	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Modbus function	Read access	Write access
	registers					code		
5164	8	Unit of	Value of	Number of	Operating	3, 4	U/A/S	none
		temperature for	temperature	calibrations	hour for			
		CP1	of CP1	at CP1	CP1			
5324	8	Unit of	Value of	Number of	Operating	3, 4	U/A/S	none
		temperature for CP6	temperature of CP6	calibrations at CP6	hour for CP6			

Figure 2.8.5.3: Definition of register 5164 for CP1 and 5324 for CP6.

Command: C	alibration CP1 values	Modbus address:	5164 Length: 8	Type: 3 Read
Parameter:	Unit of temperature	Temperature	Number of cali	Operating hour
Format:	Hex	Float	Decimal	Float
Value:	0x00000004	21.0769	28	42.09541

Figure 2.8.5.4: Example to read the calibration values for CP1. The physical unit is °C (0x04), the temperature is 21.08 °C, the number of calibrations at CP1 is 28 and the operating hour is 42.1 h.

Command: C	alibration CP6 values	Modbus address:	5324 Length: 8	Type: 3 Read	
Parameter:	Unit of temperature	Temperature	Number of cali	Operating hour	
Format:	Hex	Float	Decimal	Float	
Value:	0x00000004	22.97751	13	45.16504	

Figure 2.8.5.5: Example to read the calibration values for CP6. The physical unit is °C (0x04), the temperature is 22.98 °C, the number of calibrations at CP6 is 13 and the operating hour is 45.2 h.

2.8.6 Currently active Calibration Parameters part 2

Registers 5172 (CP1) and 5332 (CP6) are not defined for Conducell UPW Arc Sensors.

2.8.7 Currently active Calibration Parameters part 3

In register 5520 and 5560 the conductivity value of the used calibration standards, the electrical resistance of the conductivity sensor and the temperature upon calibration are stored.

Start	Number	Reg1 / Reg2	Reg3 /	Reg5 /	Reg7 /	Modbus	Read	Write
register	of registers		Reg4	Reg6	Reg8	function code	access	access
5520	8	Theoretical conductivity value of the calibration standard at CP1 at effective T [µS/cm]	Electrical resistance at CP1 [Ohm]	Temp at CP1 [K]	free	3, 4	A/S	none
5560	8	Conductivity reading at initial measure- ment of CP6 [µS/cm]	Electrical resistance at initial measure- ment of CP6 [Ohm]	Temp at initial measure- ment of CP6 [K]	free	3, 4	A/S	none

Figure 2.8.7.1: Definition of register 5520 and 5560. Note: the interpretation of the Reg1/Reg2 is different for CP1 compared to CP6.

Command: A	ct calibration CP1	Modbus address: 5520		Length: 8	Туре: 3	Read
Parameter:	Conductivity value	Electrical	Temp		free	
	of the standard [µS/cm]	resistance [Ohm]	[K]			
Format:	Float	Float	Float		Float	
Value:	1312.96	78.4	294.23		0	

Figure 2.8.7.2: Example to read the actual calibration values of CP1. Register 5520 reports:

 The conductivity value of the calibration standard (nominal value 1413 µS/cm), compensated to the effective temperature 294.23 K and using the actual value (actual value at 25°C set by operator: 1416 µS/cm). In this case 1312.96 µS/cm.

 The resistance reading of the sensor in the moment of CP1, in this case 78.4 Ohm. Note: the cell constant reported in register 5448, determined with this CP1, is the quotient of conductivity value 1312.9 µS/cm and the electrical resistance 78.4 Ohm.

• The temperature reading of the sensor in the moment of CP1. In this case 294.23 K.

Command: A	ct calibration CP6	Modbus address: 5560		Length: 8	Туре: 3	Read
Parameter:	Conductivity reading at initial measurement [µS/cm]	Electrical resistance [Ohm]	Temp [K]		free	
Format:	Float	Float	Float		Float	
Value:	1336.7	77.0	296.13		0	

Figure 2.8.7.3: Example to read the actual calibration values of CP6. Register 5560 reports:

• The conductivity reading of the sensor at the effective temperature (using the calibration settings that were active upon initial measurement of the product calibration). In this case 1336.7 μ S/cm. Note: this is the conductivity reading at the effective temperature, <u>not</u> compensated to 25°C.

- The resistance reading of the sensor upon initial measurement of the product calibration. In this case 77.0 Ohm.
- The temperature reading of the sensor upon initial measurement of the product calibration. In this case 296.13 K.

2.8.8 Currently active Calibration Parameters part 4

Register 5448 documents the cell constant which is defined by CP1 or CP6 calibration.

Start	Number	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus	Read	Write
register	of	(Float)	(Float)	(Float)	function	access	access
	registers				code		
5448	6	Offset	Cell constant	Reference	3, 4	U/A/S	none
		resistance	of the active	temperature [K]			
		[Ohm]	calibration				
			[1/cm]				

Figure 2.8.8.1: Definition of register 5448.

Command: C	Calculated cali values	Modbus address: 5448		Length: 6	Туре: 3	Read
Parameter:	Offset resistance	Cell constant	Ref te	emp		
	[Ohm]	[1/cm]	[K]			
Format:	Float	Float	Float			
Value:	0	0.1029531	298.1	5		

Figure 2.8.8.2: Example to read register 5448: offset resistance is always 0; cell constant is 0.103 1/cm; reference temperature is 298.15 K (=25°C).

Note: the cell constant is determined either by CP1 or CP6.

For standard calibration (CP1) register 5480 documents limits of resistance offset and cell constant:

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Modbus function code	Read access	Write access
5480	8	Min value of resistance offset [Ohm]	Max value of resistance offset [Ohm]	Min value of cell constant [1/cm]	Max value of cell constant [1/cm]	3, 4	U/A/S	none

Figure 2.8.8.3: Definition of register 5480.

Command: L	imits of calc. cali value	s Modbus address: 54	80 Length: 8	Type: 3 Read
Parameter:	Min value of	Max value of	Min value of cell	Max value of cell
	resistance offset	resistance offset	constant [1/cm]	constant [1/cm]
	[Ohm]	[Ohm]		
Format:	Float	Float	Float	Float
Value:	-2	2	0.05	0.2

Figure 2.8.8.4: Example to read register 5480: Resistance offset is allowed from -2 to +2 Ohm; cell constant is allowed from 0.05 to 0.2 1/cm.

2.8.9 Currently active Calibration Parameters part 5

In register 5182, 5214 and 5342 the system time of the calibration is stored. The system time is explained in chapter 2.9.2.

Note: for CP6, the system time is set during the action "initial measurement".

Start	Number of	Reg1 / Reg2	Modbus function	Read	Write
register	registers		code	access	access
5182	2	System Time CP1	3, 4	U/A/S	none
5214	2	System Time CP2	3, 4	U/A/S	none
5342	2	System Time CP6	3, 4	U/A/S	none

Figure 2.8.9.1: Definition of register 5182 for CP1, 5214 for CP2 and 5342 for CP6.

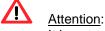
Command: S	Command: System Time CP1		Modbus address: 5182		Туре: 3	Read
Parameter:	System Time CP1					
Format:	u-int					
Value:	1334102400					

Figure 2.8.9.2: Example to read the system time of CP1. The sensor is calibrated at 1334102400 which is equivalent to the 1st of April 2012 00:00 according to the base date of January 1st 1970.

Command: System Time CP2		Modbus address:	Modbus address: 5214		Туре: 3	Read
Parameter:	System Time CP2					
Format:	u-int					
Value:	1333540800					

Figure 2.8.9.3: Example to read the system time of CP2. CP2 has been performed on the 4th of April 2012 at 12:00.

Command: System Time CP6		Modbus address:	Modbus address: 5342		Туре: 3	Read
Parameter:	System Time CP6					
Format:	u-int					
Value:	1334131200					


Figure 2.8.9.4: Example to read the system time of CP6. The initial measurement of the product calibration has been performed on April 11th 2012 at 8:00.

2.8.10 Special Commands for Calibration with VISICAL

The VISICAL calibration device allows calibration of Conducell UPW Arc Sensors at CP1. The Conducell UPW Arc Sensor's associated calibration parameters for CP1 are those predefined and stored in the corresponding register of the sensor.

Register 5180 defines the conductivity value for CP1 which is only valid for use with VISICAL. The same calibration limits for the conductivity value are used as for standard calibration at CP1 (register 5152).

It is not possible to perform a product calibration using VISICAL.

- Physical unit is fixed to µS/cm by definition.
- Only the LOW button has any significance for VISICAL.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
5180	2	conductivity value at CP1 [µS/cm]	3, 4, 16	U/A/S	S
		(default: 0)			

Figure 2.8.10.1: Definition of register 5180 for CP1.

Command: VISICAL CP1		Modbus address:	5180	Length: 2	Туре: 3	Read
Parameter:	Value [µS/cm]					
Format:	Float					
Value:	0					

Figure 2.8.10.2: Example to read the conductivity value valid for CP1. It is 0. Accordingly, the next time when a calibration is started using VISICAL at LOW, a standard calibration with automatic recognition of the standard is performed. The operator has to make sure that the used standard is one of the selected for automatic recognition.

Command: VISICAL CP1		Modbus address:	5180	Length: 2	Type: 16	Write
Parameter:	Value [µS/cm]					
Format:	Float					
Value:	84					

Figure 2.8.10.3: Example to set the VISICAL calibration value for CP1 to 84 µS/cm.

Attention:

Pressing VISICAL's HIGH button when in use with Conducell UPW Arc Sensors will not have any consequences.

2.8.11 Calibration Standards

2.8.11.1 Available Sets of Calibration Standards

Conducell UPW Arc Sensors can store and operate four different sets of calibration standards each having max 12 calibration standards. Before calibration the operator has to select one defined set to operate with. Default setting is the Hamilton set of calibration standards.

The operator can change the selection of sets at any time, without compromising prior calibration data at CP1.

In register 9472 the available sets of calibration standards are defined.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write			
register	registers	(Bit, see Figure 2.8.11.1.2)	function code	access	access			
9472	2	Available calibration standard sets	3, 4	U/A/S	none			
Eiguro 2.0	Figure 2.9.11.1.1: Definition of register 0472							

Figure 2.8.11.1.1: Definition of register 9472.

Bit #	Hex value	Description	Definition				
0 (LSB)	0x00000001	Set 1	HAMILTON				
1	0x0000002	Set 2	REAGECON				
2	0x00000004	Set 3	KCI solutions				
3	0x0000008	Set 4	Pure Water				
E	Figure 0.0.4.4.0. Definition of evolution of a finite state of a fibertion standards						

Figure 2.8.11.1.2: Definition of available sets of calibration standards.

Command: Available cali sets		Modbus address: 94	472 Length: 2	Туре: 3	Read
Parameter:	Calibration sets				
Format:	Hex				
Value:	0x0000000F				

Figure 2.8.11.1.3: Example to read the available calibration sets: Set 1 (0x00000001) + set 2 (0x00000002) + set 3 (0x00000004) + set 4 (0x00000008), in total 0x0000000F.

In register 9474 the selected set of calibration standards is defined.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write			
register	registers	(Bit, see Figure 2.8.11.1.22)	function code	access	access			
9474	2	Selected set of calibration standard	3, 4	U/A/S	S			
Figure 2.8.	Figure 2.8.11.1.4: Definition of register 9474. Only one bit can be set.							

Command: Selected set of cal stand.		Modbus address: 9474	Length: 2	Туре: 3	Read
Parameter:	Calibration set				
Format:	Hex				
Value:	0x00000001				
E'	4 E. Evennels to used t		and a second sec	0.1.4./	

Figure 2.8.11.1.5: Example to read the selected set of calibration standards. Set 1 (HAMILTON) (0x00000001) is active.

Command: Select set of cal stand.		Modbus address: 9474	Length: 2	Type: 16	Write
Parameter:	Calibration set				
Format:	Hex				
Value:	0x04				

Figure 2.8.11.1.6: Example to set the calibration standard set to "KCI solutions" (0x04).

2.8.11.2 Definitions for Individual Sets of Calibration Standards

Once the operator has selected a set of calibration standards (register 9474) the register 9504 and following give all information on the selected set of calibration standards.

Start	Number of	Reg1 to Reg8	Modbus	Read	Write
register	registers	(16 ASCII characters)	function code	access	access
9504	8	Manufacturer of the selected set	3, 4	U/A/S	none
9512	8	Info 1 of the selected set	3, 4	U/A/S	none
9520	8	Info 2 of the selected set	3, 4	U/A/S	none

Figure 2.8.11.2.1: Definition of registers 9504 to 9520.

Command: m	nanufacturer of set	Modbus address: 9504	Length: 8	Туре: 3	Read
Parameter:	Text				
Format:	Character				
Value:	HAMILTON				

Figure 2.8.11.2.2: Example to read the description (in this case, the set 0x01 is selected)

Within one set of calibration standards, a maximum of 12 calibration standards are available. In the following registers, the details of each calibration standard are given:

Start register	Description
9536	Nominal value and tolerance of calibration standard 1
9552	Nominal value and tolerance of calibration standard 2
9568	Nominal value and tolerance of calibration standard 3
9584	Nominal value and tolerance of calibration standard 4
9600	Nominal value and tolerance of calibration standard 5
9616	Nominal value and tolerance of calibration standard 6
9632	Nominal value and tolerance of calibration standard 7
9648	Nominal value and tolerance of calibration standard 8
9664	Nominal value and tolerance of calibration standard 9
9680	Nominal value and tolerance of calibration standard 10
9696	Nominal value and tolerance of calibration standard 11
9712	Nominal value and tolerance of calibration standard 12

Figure 2.8.11.2.3: Definition for the register range from 9536 until 9720.

Start	Number	Reg1 /	Reg3 /	Reg5 /	Reg7 /	Modbus	Read	Write
register	of	Reg2	Reg4	Reg6	Reg8	function	access	access
_	registers	(Float)	(Float)	(Float)	(Float)	code		
9536,	8	Calibr.	Tolerance	Value to be	Tolerance	3, 4	U/A/S	none
9552,		standard	of nominal	measured	of value to			
		nominal	value (±)	nominally	be			
		value	[µS/cm]	[µS/cm]	measured			
9712		[µS/cm]			(±) [µS/cm]			

Figure 2.8.11.2.4: Definition for registers 9536 until 9720.

Command: F	Read standard 4	Modbus address:	9648 Length: 8	Type: 3 Read
Parameter:	Calibr. standard nominal value (manual) [µS/cm]	Tolerance of nominal value (manual) (±) [µS/cm]	Calibr. standard nominal value (automatic) [µS/cm]	Tolerance of nominal value (automatic) (±) [µS/cm]
Format:	Float	Float	Float	Float
Value:	1413	14.13	1413	700

Figure 2.8.11.2.5: Example to read the values for calibration standard 8 within the "HAMILTON" set. This standard has a nominal value of 1413 ± 14.13 µS/cm until expiry date as defined by Hamilton.

During standard calibration with automatic recognition the sensor accepts a range of conductivity readings between 1398.87 and 1427.13 μ S/cm (1413 ± 14.13 μ S/cm) to be assigned to this standard. Of course, the conductivity reading used for this assignment considers on the currently active cell constant.

During standard calibration with manual recognition only conductivity values between 713 and 2113 μ S/cm (1413 ± 700 μ S/cm) can be assigned to this standard.

Note: The decision, if this standard calibration is valid, is made after calculation of the cell constant. If this parameter is out of limits, the calibration using this standard will be denied.

Note: Make sure that calibration standards selected for automatic calibration do not exhibit overlapping acceptance ranges!

Register 9528 defines for the selected set of calibration standards:

- the available calibration standards for manual selection of the conductivity value
- the available calibration standards for automatic recognition of the conductivity value

Start	Number of	Reg1 / Reg2	Modbus	Read	Write	
register	registers	(Bit, see Figure 2.8.11.2.8)	function code	access	access	
9528	528 2 Availability of the 12 cal. standards			U/A/S	none	
Figure 2.8.11.2.6: Definition of register 9528						

Command: A	vailable standards	Modbus address: 9	528	Length: 2	Туре: 3	Read
Parameter:	Standard fields					
Format:	Hex					
Value:	0x00FF00FF					

Figure 2.8.11.2.7: Example to read the information of register 9528. For the definition of the bits, see Figure 2.8.11.2.8. The value 0x00FF00FF says that (for the selected set of calibration standards):

- calibration standards 1-8 are available for manual calibration
- calibration standards 1-8 are available for automatic recognition.

Bit	Hex code	Index of Calibration Standard within the selected set	Calibration type
0 (LSB)	0x00000001	1	manual selection
1	0x0000002	2	manual selection
2	0x00000004	3	manual selection
3	0x0000008	4	manual selection
4	0x00000010	5	manual selection
5	0x00000020	6	manual selection
6	0x00000040	7	manual selection
7	0x0000080	8	manual selection
8	0x00000100	9	manual selection
9	0x00000200	10	manual selection
10	0x00000400	11	manual selection
11	0x00000800	12	manual selection
12-15		not available	
16	0x00010000	1	automatic recognition
17	0x00020000	2	automatic recognition
18	0x00040000	3	automatic recognition
19	0x00080000	4	automatic recognition
20	0x00100000	5	automatic recognition
21	0x00200000	6	automatic recognition
22	0x00400000	7	automatic recognition
23	0x00800000	8	automatic recognition
24	0x01000000	9	automatic recognition
25	0x02000000	10	automatic recognition
26	0x04000000	11	automatic recognition
27	0x08000000	12	automatic recognition
28-31		not available	

Figure 2.8.11.2.8: Availability / Selection for the 12 calibration standards within one given set. Bit 0-11 define availability of standards 1-12 for manual calibration.

Bit 16-27 define availability of standards 1-12 for automatic recognition

Register 9528: the corresponding calibration standard is available if bit is set Register 9530: the corresponding calibration standard is selected if bit is set

By means of register 9530, the specialist can define for each available calibration standard if the specific standard is available.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write	
register	registers	(Bit, see Figure 2.8.11.2.8)	function code	access	access	
9530 2 Selected standard fields 3, 4 U/A/S S						
9550 2 Selected standards within one given set						

Figure 2.8.11.2.9: Selected calibration standards within one given set.

Command: S	Selected standard fields	Modbus address: 9530	D Length: 2	Туре: 3	Read
Parameter:	Standard fields				
Format:	Hex				
Value:	0x008F00FF				

Figure 2.8.11.2.10: Example to read the selected calibration standards. The value 0x038F03FF says that:

- calibration standards 1-8 are selected for manual selection
- calibration standards 1, 2, 3, 4 and 8 are selected for automatic recognition

Command: S	elected standard fields	Modbus address: 9530	D Length: 2	Type: 16	Write
Parameter:	Standard fields				
Format:	Hex				
Value:	0x008C00FF				

Figure 2.8.11.2.11: Example to set the calibration standards 1-8 for manual calibration and calibration standards 3, 4 and 8 for automatic recognition.

Attention:

Note: make sure that calibration standards selected for automatic calibration do not exhibit overlapping acceptance windows (see Figure 2.8.11.2.5)!

Calibration Standards			
Calibration standards available TOTAL		Calibration standards available for OPERAT	OR
Standard 1 manual cali - 1.3 uS/cm	🔽 Standard 1 auto cali - 1.3 uS/cm	🔽 Standard 1 manual cali - 1.3 uS/cm	▼ Standard 1 auto cali - 1.3 uS/cm
🔽 Standard 2 manual cali - 5 uS/cm	🔽 Standard 2 auto cali - 5 uS/cm	🔽 Standard 2 manual cali - 5 uS/cm	🔽 Standard 2 auto cali - 5 uS/cm
🔽 Standard 3 manual cali - 15 uS/cm	🔽 Standard 3 auto cali - 15 uS/cm	🔽 Standard 3 manual cali - 15 uS/cm	🔽 Standard 3 auto cali - 15 uS/cm
🔽 Standard 4 manual cali - 84 uS/cm	🔽 Standard 4 auto cali - 84 uS/cm	🔽 Standard 4 manual cali - 84 uS/cm	🔽 Standard 4 auto cali - 84 uS/cm
🔽 Standard 5 manual cali - 100 uS/cm	🔽 Standard 5 auto cali - 100 uS/cm	🔽 Standard 5 manual cali - 100 uS/cm	🥅 Standard 5 auto cali - 100 uS/cm
🔽 Standard 6 manual cali - 147 uS/cm	🔽 Standard 6 auto cali - 147 uS/cm	🔽 Standard 6 manual cali - 147 uS/cm	🥅 Standard 6 auto cali - 147 uS/cm
🔽 Standard 7 manual cali - 706 uS/cm	🔽 Standard 7 auto cali - 706 uS/cm	🔽 Standard 7 manual cali - 706 uS/cm	🥅 Standard 7 auto cali - 706 uS/cm
🔽 Standard 8 manual cali - 1413 uS/cm	🔽 Standard 8 auto cali - 1413 uS/cm	🔽 Standard 8 manual cali - 1413 uS/cm	🔽 Standard 8 auto cali - 1413 uS/cm
🔲 Standard 9 manual cali - 0 uS/cm	🔲 Standard 9 auto cali - 0 uS/cm	🥅 Standard 9 manual cali - 0 uS/cm	🥅 Standard 9 auto cali - 0 uS/cm
🔲 Standard 10 manual cali - 0 uS/cm	🔲 Standard 10 auto cali - 0 uS/cm	🔲 Standard 10 manual cali - 0 uS/cm	🥅 Standard 10 auto cali - 0 uS/cm
🔲 Standard 11 manual cali - 0 uS/cm	🔲 Standard 11 auto cali - 0 uS/cm	🥅 Standard 11 manual cali - 0 uS/cm	🥅 Standard 11 auto cali - 0 uS/cm
🔲 Standard 12 manual cali - 0 uS/cm	🔲 Standard 12 auto cali - 0 uS/cm	🔲 Standard 12 manual cali - 0 uS/cm	🥅 Standard 12 auto cali - 0 uS/cm
L	ок	Cancel	

Figure 2.8.11.2.12: Illustration from the Arc Sensor Configurator software tool for registers 9528 and 9530. For this example, the HAMILTON set of calibration standard is selected.

On the left half of the figure, the availability of the calibration standards 1-12 is shown, as defined in register 9528. In the left column, the availability for manual calibration is shown (calibration standards 1-8). In the right column, the availability for automatic recognition is given (calibration standards 1-8 as well).

On the right half of the figure, the individual selection defined by the specialist is shown as read from register 9530. In the left column, the selection for manual selection is shown (calibration standards 1-8). In the right column the selection for automatic recognition is given (calibration standards 1, 2, 3, 4 and 8).

Manufacturer	Availability for manual selection (left) and automatic recognition (right)
HAMILTON	Standard 1 manual cali · 1.3 uS/cm
	Standard 2 manual cali - 5 uS/cm 🔽 Standard 2 auto cali - 5 uS/cm
	Standard 3 manual cali - 15 uS/cm 🔽 Standard 3 auto cali - 15 uS/cm
	Standard 4 manual cali - 84 uS/cm 🔽 Standard 4 auto cali - 84 uS/cm
	Standard 5 manual cali - 100 uS/cm 🔽 Standard 5 auto cali - 100 uS/cm
	I Standard 6 manual cali - 147 uS/cm I Standard 6 auto cali - 147 uS/cm
	I Standard 7 manual cali - 706 uS/cm I Standard 7 auto cali - 706 uS/cm
	🔽 Standard 8 manual cali · 1413 uS/cm 🛛 🔽 Standard 8 auto cali · 1413 uS/cm
	🗖 Standard 9 manual cali - 0 uS/cm 🔲 Standard 9 auto cali - 0 uS/cm
	🗖 Standard 10 manual cali - 0 uS/cm 📄 Standard 10 auto cali - 0 uS/cm
	🗖 Standard 11 manual cali - 0 uS/cm 📄 Standard 11 auto cali - 0 uS/cm
	🔲 Standard 12 manual cali - 0 uS/cm 👘 Standard 12 auto cali - 0 uS/cm
REAGECON	Standard 1 manual cali - 10 uS/cm
	✓ Standard 2 manual cali - 20 uS/cm
	✓ Standard 3 manual cali - 50 uS/cm ✓ Standard 3 auto cali - 50 uS/cm
	Standard 4 manual cali - 200 uS/cm
	Standard 5 manual cali - 500 uS/cm 🔽 Standard 5 auto cali - 500 uS/cm
	▼ Standard 6 manual cali · 1000 uS/cm ▼ Standard 6 auto cali · 1000 uS/cm
	☐ Standard 7 manual cali - 0 uS/cm ☐ Standard 7 auto cali - 0 uS/cm
	Standard 8 manual cali - 0 uS/cm Standard 8 auto cali - 0 uS/cm
	☐ Standard 9 manual cali - 0 uS/cm ☐ Standard 9 auto cali - 0 uS/cm
	☐ Standard 10 manual cali - 0 uS/cm ☐ Standard 10 auto cali - 0 uS/cm
	☐ Standard 11 manual cali - 0 uS/cm ☐ Standard 11 auto cali - 0 uS/cm
	Standard 12 manual cali - 0 uS/cm 🔲 Standard 12 auto cali - 0 uS/cm
KCI solution	Standard 1 manual cali - 1413 uS/cm
	Standard 2 manual cali - 0 uS/cm
	Standard 3 manual cali - 0 uS/cm Standard 3 auto cali - 0 uS/cm
	Standard 4 manual cali - 0 uS/cm Standard 4 auto cali - 0 uS/cm
	☐ Standard 5 manual cali - 0 uS/cm ☐ Standard 5 auto cali - 0 uS/cm
	Standard 6 manual cali - 0 uS/cm Standard 6 auto cali - 0 uS/cm
	☐ Standard 7 manual cali - 0 uS/cm ☐ Standard 7 auto cali - 0 uS/cm
	Standard 8 manual cali - 0 uS/cm Standard 8 auto cali - 0 uS/cm
	Standard 9 manual cali - 0 uS/cm Standard 9 auto cali - 0 uS/cm
	Standard 10 manual cali - 0 uS/cm 🔲 Standard 10 auto cali - 0 uS/cm
	Standard 11 manual cali - 0 uS/cm 🔲 Standard 11 auto cali - 0 uS/cm
	Standard 12 manual cali - 0 uS/cm Standard 12 auto cali - 0 uS/cm
Pure Water	Standard 1 manual cali - 0.055 uS/cm 🔽 Standard 1 auto cali - 0.055 uS/cm
	Standard 2 manual cali - 0 uS/cm
	Standard 3 manual cali - 0 uS/cm
	Standard 4 manual cali - 0 uS/cm
	Standard 5 manual cali - 0 uS/cm
	Standard 6 manual cali - 0 uS/cm
	Standard 7 manual cali - 0 uS/cm
	Standard 8 manual cali - 0 uS/cm
	Standard 9 manual cali - 0 uS/cm Standard 9 auto cali - 0 uS/cm
	Standard 10 manual cali - 0 uS/cm
	Standard 10 manual cali - 0 uS/cm Standard 11 auto cali - 0 uS/cm
	Standard 12 manual cali - 0 uS/cm Standard 12 auto cali - 0 uS/cm

Figure 2.8.11.2.13: default definitions in register 9528 for all 4 sets of calibration standards available in Conducell UPW Arc Sensors.

2.9 Sensor Status

2.9.1 Temperature Ranges

In registers 4608, 4612 and 4616 three different temperature ranges are defined:

- Operation in this range the sensor will work properly (current output, Modbus communication), except the measurement, which is stopped until the temperature is back in the measurement range. In this case the last value of measurement will be frozen and sent to analog interfaces.
- Measurement in this range the sensor is able to measure.
- Calibration in this range the sensor can be calibrated.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers			function	access	access
				code		
4608	4	Operating	Operating	3, 4	U/A/S	none
		temperature min [°C]	temperature max [°C]			
4612	4	Measurement	Measurement	3, 4	U/A/S	none
		temperature min [°C]	temperature max [°C]			
4616	4	Calibration	Calibration	3, 4	U/A/S	none
		temperature min [°C]	temperature max [°C]			

Figure 2.9.1.1: Definition of register 4608, 4612 and 4616.

Command: Operating T range		Modbus address: 4608		Length: 4	Туре: 3	Read
Parameter:	Operating T min	Operating T max				
	[°Ċ]	[°Ċ]				
Format:	Float	Float				
Value:	-20	130				
E :						

Figure 2.9.1.2: Example to read the operating temperature values min and max.

Command: M	leasurement T range	Modbus address:	4612	Length: 4	Туре: 3	Read
Parameter:	Measurement T	Measurement T				
	min [°C]	max [°C]				
Format:	Float	Float				
Value:	0	110				

Figure 2.9.1.3: Example to read the measurement temperature values min and max.

Command: C	Calibration T range	Modbus address:	4616	Length: 4	Туре: 3	Read
Parameter:	Calibration T min	Calibration T max				
	[°C]	[°C]				
Format:	Float	Float				
Value:	5	50				

Figure 2.9.1.4: Example to read the calibration temperature values min and max.

2.9.2 Operating Hours, Counters and System Time

In register 4676 are stored:

- total operating hours
- operating hours above max measurement temperature (see chapter 2.9.1)
- the operating hours above max operating temperature (see chapter 2.9.1)

In register 4682 are stored:

- number of power ups
- number of watchdog resets
- heartbeat (counts from 0 to 19 in an interval of 3 s, this register can be used to check permanently if the sensor is still "alive")

In register 4688 are stored:

- number of sterilizations in place (SIP) (see chapter 2.9.5)
- number of cleanings in place (CIP) (see chapter 2.9.5)

In register 4692 is stored

• number of autoclavings.

This register has no effect for the sensor and is only for the user to trace the record for himself.

In register 8232 is stored

• system time counter.

When the sensor is powered up, the system time is set to 0. A value between 0 and 2³² can be written into this register. From this value, the sensor increments this value every second. We recommend to use as base date the so-called UNIX timestamp (hint:

www.epochconverter.com) which starts at 1st of January 1970 GMT. When a calibration is performed the system time value will be copied to the register 5182 for CP1, 5214 for CP2 and 5342 for CP6 (after the action "initial measurement"). With this copied value, the absolute time of calibration can be recovered, even if the sensor has powered down in the meantime. Be sure to update this register if needed after every power up of the sensor.

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus function code	Read access	Write access
4676	6	Operating hours [h]	Operating hours above max measurement temperature [h]	Operating hours above max operating temperature [h]	3, 4	U/A/S	none
4682	6	Number of Power ups	Number of Watchdog resets	Heartbeat	3, 4	U/A/S	none
4688	4	Number of SIP cycles	Number of CIP cycles	-	3, 4	U/A/S	none
4692	2	No. of autoclavings			3, 4, 16	U/A/S	S
8232	2	System Time Counter			3, 4, 16	U/A/S	S

Figure 2.9.2.1: Definition of register 4676, 4682, 4688 4692 and 8232.

HAMILT®N

Command: C	perating hours	Modbus address:	4676	Length: 6	Туре: 3	Read
Parameter:	Operating hours [h]	Operating hours		ting hours		
		above max	above	max		
		measurement	operat	ing		
		temperature	tempe	rature		
		[h]	[h]			
Format:	Float	Float	Float			
Value:	168.3667	0	0			

Figure 2.9.2.2: Example to read the total operating hours, the operating hours above the max measurement temperature and the operating hours above the max operating temperature.

Command: P	ower & watchdog	Modbus address:	4682 Length: 6	Туре: 3	Read
Parameter:	Number of Power	Number of	Number of Writing		
	ups	Watchdog resets	cycles to flash		
		-	memory		
Format:	Decimal	Decimal	Decimal		
Value:	34	1	16		

Figure 2.9.2.3: Example to read the number of power ups, the number of watchdog resets and the number of writing cycles to flash memory.

Command: S	SIP & CIP	Modbus address:	4688	Length: 4	Туре: 3	Read
Parameter:	SIP cycles	CIP cycles				
Format:	Decimal	Decimal				
Value:	0	0				

Figure 2.9.2.4: Example to read the number of SIP cycles and the number of CIP cycles. For the definition of SIP and CIP cycles see chapter 2.9.5.

Command: A	utoclaving	Modbus address:	4692	Length: 2	Туре: 3	Read
Parameter:	Autoclavings					
Format:	Decimal					
Value:	7					

Figure 2.9.2.5: Example to read the number of autoclaving cycles.

Command: A	utoclaving	Modbus address:	4692	Length: 2	Type: 16	Write
Parameter:	Autoclavings					
Format:	Decimal					
Value:	14					

Figure 2.9.2.6: Example to write the number of autoclaving cycles. A number of 14 is written to the sensor.

Command: S	system Time	Modbus address:	8232	Length: 2	Туре: 16	Write
Parameter:	System Time					
Format:	Decimal					
Value:	1334137383					

Figure 2.9.2.7: Example to write the system time into the sensor. On the basis of January 1st 1970, this value represents the 11th of April 2012 at 09:43:03.

Command: System Time		Modbus address:	Modbus address: 8232		Туре: 16	Read
Parameter:	System Time					
Format:	Decimal					
Value:	1334150836					

Figure 2.9.2.8: Example to read the system time into the sensor. On the basis of January 1st 1970, this value represents the 11th of April 2012 at 13:27:16. Fehler! Hyperlink-Referenz ungültig. Note:

Accuracy of the system time, if not updated by the operator: The deviation of the system time is less than one minute per 24h.

2.9.3 Warnings

A "Warning" is a notification message which still allows further functioning of the system. This message alerts the operator of a possible problem that could lead to uncertain results.

2.9.3.1 Currently Active Warnings

The currently active warnings are stored in register 4736.

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Modbus function code	Read access	Write access
4736	8	Active warning measure- ment (bitwise defined)	Active warning calibration (bitwise defined)	Active warning interface (bitwise defined)	Active warning hardware (bitwise defined)	3, 4	U/A/S	none

Figure 2.9.3.1.1: Definition of register 4736 (see chapter 2.9.3.3)

Command: Active warning		Modbus address: 4736 Length:		Type: 3 Rea	ad
Parameter:	W Measurement	W Calibration	W Interface	W Hardware	
Format:	Hex	Hex	Hex	Hex	
Value:	0x00	0x00	0x00	0x00	

Figure 2.9.3.1.2: Example to read the currently active warnings.

2.9.3.2 History of Warnings

The history of warnings is not implemented in Conducell UPW Arc Sensors.

2.9.3.3 Definition of Warnings

Bit #	Hex	Description
0 - 2		not available
3	0x0008	USP Warning
4	0x0010	USP Alarm
5 - 31		not available

Figure 2.9.3.3.1: Definition of warnings "measurement".

Bit #	Hex	Description
0 (LSB)	0x0001	PMC1 (conductivity) calibration recommended
1	0x0002	PMC1 (conductivity) last calibration not successful
2 - 31		not available
	2.2. Definition	of warnings "aplibration"

Figure 2.9.3.3.2: Definition of warnings "calibration".

Bit #	Hex	Description		
0 - 31		not available		
Figure 2.9.3.3.3: Definition of warnings "interface". None is defined.				

Bit #	Hex	Description	
0 - 31		not available	

Figure 2.9.3.3.4: Definition of warnings "hardware". None is defined.

2.9.4 Errors

An "Error" message indicates a serious problem of the sensor which does not allow further proper functioning of the sensor. This problem must be solved.

2.9.4.1 Currently Active Errors

The currently active errors are stored in register 4800.

Start	Number	Reg1 /	Reg3 /	Reg5 /	Reg7 /	Modbus	Read	Write
register	of	Reg2	Reg4	Reg6	Reg8	function	access	access
	registers					code		
4800	8	Active error measure- ment (bitwise defined)	Active error calibration (bitwise defined)	Active error interface (bitwise defined)	Active error hardware (bitwise defined)	3, 4	U/A/S	none

Figure 2.9.4.1.1: Definition of register 4800 (see chapter 2.9.4.3)

Command: Active errors		Modbus address:	4800 Length:	8 Type: 3	Read
Parameter:	E Measurement	E Calibration	E Interface	E Hardware	
Format:	Hex	Hex	Hex	Hex	
Value:	0x00	0x00	0x00	0x00	

Figure 2.9.4.1.2: Example to read the currently active errors.

2.9.4.2 History of Errors

The history of errors is not implemented in Conducell UPW Arc Sensors.

2.9.4.3 Definition of Errors

Bit #	Hex	Description
0		Cond reading failure
	0x0000001	(this error occurs, when any other error is active)
1 – 9		not available
10		Measured resistance too high (open circuit of electric line for
	0x0000400	measurement; dry electrodes)
11		Measured resistance too low (short circuit of electric line for
	0x0000800	measurement)
12		Resistance between electrodes too high (open circuit of electric
	0x0001000	current line; dry electrodes)
13		Resistance between electrodes too low (short circuit of electric
	0x0002000	current line)
14 – 24		not available
25	0x2000000	Temperature sensor defective
26 – 31		not available

Figure 2.9.4.3.1: Definition of errors "measurement".

Bit #	Hex	Description
0		not available
1	0x000002	Sensor failure (Quality value < 15%)
2 - 31		not available
E'		formere "cellbratice"

Figure 2.9.4.3.2: Definition of errors "calibration".

Bit #	Hex	Description		
0 - 31		not available		
Figure 2.9.4.3.3: Definition of errors "interface". None is defined.				

Bit #	Hex	Description
0 - 23		not available
24	0x1000000	Internal communication error (between front-end and user-end)
25 - 31		not available

Figure 2.9.4.3.4: Definition of errors "hardware".

page 83 / 89

2.9.5 Reading Definition of SIP and CIP

Conducell UPW Arc Sensor are counting special cleaning events such as sterilizations or cleaning cycles by means of tracking typical temperature profiles (see chapter 2.9.2).

Register 4988 defines a typical temperature profile for SIP (sterilization in place) and register 4996 for CIP (cleaning in place). For the explanation the following values are given:

CIP temperature min: 80 °C	CIP temperature max: 100 °C	CIP time min: 30 minutes
SIP temperature min: 120 °C	SIP temperature max: 130 °C	SIP time min: 30 minutes

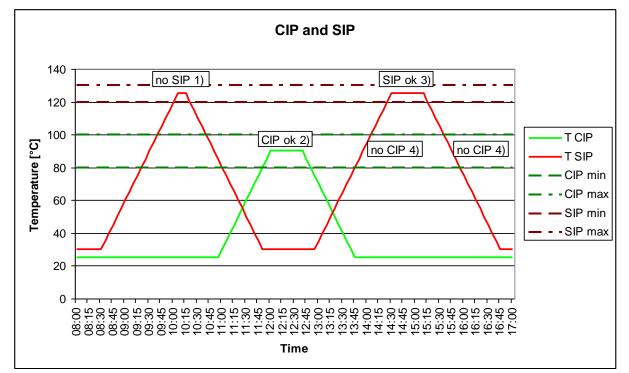


Figure 2.9.5.1: Definition of CIP and SIP cycles.

- 1) no SIP-cycle counted, because time too short <30 minutes.
- 2) CIP-cycle counted, because time >30 minutes and in CIP temperature range.
- 3) SIP-cycle counted, because time >30 minutes and in SIP temperature range.
- 4) no CIP-cycle counted, because of reaching the SIP-min limit.

Start register	Number of	Reg1 / Reg2	Reg3 /	Reg5 / Reg6	Reg7 / Reg8	Modbus function	Read access	Write access
register	registers	Regz	Reg4	Rego	кеуо	code	access	access
4988	8	SIP Tempera- ture min [°C]	SIP Tempera- ture max [°C]	SIP Process time min [min]	Empty	3, 4	U/A/S	S
4996	8	CIP Tempera- ture min [°C]	CIP Tempera- -ture max [°C]	CIP Process time min [min]	Empty	3, 4	U/A/S	S

Figure 2.9.5.2: Definition of register 4988 and 4996.

Command: S	IP definition	Modbus address:	4988 Length: 8	Type: 16	Write
Parameter:	T min [°C]	T max [°C]	Time min [min]	Empty	
Format:	Float	Float	Float	Float	
Value:	120	130	30	0	
Eiguro 20E2	Example to write the	CID definitions			

Figure 2.9.5.3: Example to write the SIP definitions.

Command: S	SIP definition	Modbus address:	4988 Length	n: 8 Type: 3	Read			
Parameter:	T min [°C]	T max [°C]	Time min [min]] Empty				
Format:	Float	Float	Float	Float				
Value:	120	130	30	0				
Figure 2.0.5.4. Example to read the CID definitions								

Figure 2.9.5.4: Example to read the SIP definitions.

Command: C	IP definition	Modbus address:	4996	Length: 8	Туре: 16	Write		
Parameter:	T min [°C]	T max [°C]	Time m	nin [min]	Empty			
Format:	Float	Float	Float		Float			
Value:	80	100	30		0			
Figure 20 F F	Figure 2.0.5.5: Example to write the CIP definitions							

Figure 2.9.5.5: Example to write the CIP definitions.

Command: C	IP definition	Modbus address:	4996	Length: 8	Туре: 3	Read
Parameter:	T min [°C]	T max [°C]	Time	min [min]	Empty	
Format:	Float	Float	Float		Float	
Value:	80	100	30		0	

Figure 2.9.5.6: Example to read the CIP definitions.

2.9.6 Reading the Sensor's Quality Indicator

In register 4872 the sensor quality (0-100%) is given.

Start register	Number of registers	Reg1 / Reg2 (Float)	Modbus function code	Read access	Write access
4872	2	Quality [%]	3, 4	U/A/S	none

Figure 2.9.6.1: Definition of register 4872.

Command: Quality indicator	Modbus address: 4872	Length: 2	Туре: 3	Read
Parameter: Quality [%]				
Format: Float				
Value: 100				

Figure 2.9.6.2: Example to read the sensor's quality indicator.

The sensor's quality indicator is influenced by:

- Cell constant
- Errors (An error sets the quality indicator always to 0!)

2.10 Sensor Identification and Information

2.10.1 General Information

General information about the sensor is available as shown in the figure below.

Start	Number of	Reg1 to Reg8	Example of content	Modbus	Read	Write
register	registers	(16 ASCII characters)		function	access	access
				code		
1024	8	Userend FW Date	2020-12-14	3, 4	U/A/S	none
1032	8	Userend FW	CPWUM033	3, 4	U/A/S	none
1040	8	Userend BL Date	2009-09-18	3, 4	U/A/S	none
1048	8	Userend BL	BL0UX012	3, 4	U/A/S	none
1056	8	Userend Ref	242822	3, 4	U/A/S	none
1064	8	Userend SN	not available	3, 4	U/A/S	none
1072	8	Userend (space holder)	not available	3, 4	U/A/S	none
1080	8	Userend (space holder)	not available	3, 4	U/A/S	none
1088	8	Frontend FW Date	2009-09-16	3, 4	U/A/S	none
1096	8	Frontend FW	CONFI010	3, 4	U/A/S	none
1104	8	Frontend BL Date	not available	3, 4	U/A/S	none
1112	8	Frontend BL	not available	3, 4	U/A/S	none
1120	8	Frontend Ref	242825	3, 4	U/A/S	none
1128	8	Frontend SN	not available	3, 4	U/A/S	none
1136	8	Frontend (space holder)	not available	3, 4	U/A/S	none
1144	8	Frontend (space holder)	not available	3, 4	U/A/S	none

Figure 2.10.1.1: Definition of registers containing read-only sensor information.

Command: Userend Firmware		Modbus address: 1	032	Length: 8	Туре: 3	Read
Parameter:	Text					
Format:	Character					
Value:	CPWUM033					

Figure 2.10.1.2: Example to read register 1032.

2.10.2 Sensor Identification

Start	Number of	Reg1 to Reg8	Example of content	Modbus	Read	Write
register	registers	(16 ASCII characters)		function	access	access
				code		
1280	8	Sensor Ref	242720/00	3, 4	U/A/S	none
1288	8	Sensor name	Conducell PWSE	3, 4	U/A/S	none
1296	8	Sensor Lot	1460004	3, 4	U/A/S	none
1304	8	Sensor Lot date	22.02.2021	3, 4	U/A/S	none
1312	8	Sensor SN	0002024	3, 4	U/A/S	none
1320	8	Manufacturer part 1	HAMILTON Bonaduz	3, 4	U/A/S	none
1328	8	Manufacturer part 2	AG Switzerland	3, 4	U/A/S	none
1336	8	Sensor type	ARC e.Con Sensor	3, 4	U/A/S	none
1344	8	Power supply	7-30V 150mW	3, 4	U/A/S	none
1352	8	Pressure range	0-10bar	3, 4	U/A/S	none
1360	8	Sensor ID	242710-0002024	3, 4	U/A/S	none
1368	8	a-length	87	3, 4	U/A/S	none
1376	8	(space holder)	not available	3, 4	U/A/S	none
1384	8	Electrical connection	VP 8.0	3, 4	U/A/S	none
1392	8	Process connection	TC 1.5"	3, 4	U/A/S	none
1400	8	Sensing material	1.4435	3, 4	U/A/S	none

Figure 2.10.2.1: Definition of registers containing sensor identification.

Command: Serial number		Modbus address: 1	312	Length: 8	Туре: 3	Read
Parameter: Text						
Format: Character	•					
Value: 0002024						
Figure 2.10.2.2: Example to read register 1312						

Figure 2.10.2.2: Example to read register 1312.

2.10.3 Free User Memory Space

These registers can be used to store any customer specific information in the sensor. There are different registers which can be read by everybody, but only specific operators can write them.

Start	Number	Reg1 to Reg8	Example of content	Modbus	Read	Write
register	of	(16 ASCII characters)		function	access	access
	registers			code		
1536	8	Free user space U/A/S	*FREE_USERSPACE*	3, 4, 16	U/A/S	U/A/S
1544	8	Free user space U/A/S	*FREE_USERSPACE*	3, 4, 16	U/A/S	U/A/S
1552	8	Free user space U/A/S	*FREE_USERSPACE*	3, 4, 16	U/A/S	U/A/S
1560	8	Free user space U/A/S	*FREE_USERSPACE*	3, 4, 16	U/A/S	U/A/S
1568	8	Free user space A/S	*FREE_USERSPACE*	3, 4, 16	U/A/S	A/S
1576	8	Free user space A/S	*FREE_USERSPACE*	3, 4, 16	U/A/S	A/S
1584	8	Free user space A/S	*FREE_USERSPACE*	3, 4, 16	U/A/S	A/S
1592	8	Free user space A/S	*FREE_USERSPACE*	3, 4, 16	U/A/S	A/S
1600	8	Measuring point	242710-0002024	3, 4, 16	U/A/S	S
1608	8	Free user space S	*FREE_USERSPACE*	3, 4, 16	U/A/S	S
1616	8	Free user space S	*FREE_USERSPACE*	3, 4, 16	U/A/S	S
1624	8	Free user space S	*FREE_USERSPACE*	3, 4, 16	U/A/S	S
1632	8	Reserved for Hamilton	*FREE_USERSPACE*	3, 4	U/A/S	none
1640	8	Reserved for Hamilton	*FREE_USERSPACE*	3, 4	U/A/S	none
1648	8	Reserved for Hamilton	*FREE_USERSPACE*	3, 4	U/A/S	none
1656	8	Reserved for Hamilton	*FREE_USERSPACE*	3, 4	U/A/S	none
1664	8	Ext. OEM Sensor Name	*FREE_USERSPACE*	3, 4	U/A/S	none
1672	8	Ext. OEM Part Number	*FREE_USERSPACE*	3, 4	U/A/S	none
1680	8	Ext. OEM Customer 1	*FREE_USERSPACE*	3, 4	U/A/S	none
1688	8	Ext. OEM Customer 2	*FREE_USERSPACE*	3, 4	U/A/S	none
1696	8	Reserved for Hamilton	*FREE_USERSPACE*	3, 4	U/A/S	none
1704	8	Reserved for Hamilton	*FREE_USERSPACE*	3, 4	U/A/S	none
1712	8	Reserved for Hamilton	*FREE_USERSPACE*	3, 4	U/A/S	none
1720	8	Reserved for Hamilton	*FREE_USERSPACE*	3, 4	U/A/S	none
1728	8	Reserved for Hamilton	*FREE_USERSPACE*	3, 4	U/A/S	none
1736	8	Reserved for Hamilton	*FREE_USERSPACE*	3, 4	U/A/S	none
1744	8	Reserved for Hamilton	*FREE_USERSPACE*	3, 4	U/A/S	none
1752	8	Reserved for Hamilton	*FREE_USERSPACE*	3, 4	U/A/S	none

Figure 2.10.3.1: Definition of registers containing user information.

An important register is 1600, as it is the description of the measuring point. The information of this register is displayed on the Arc View Handheld in order to identify individual sensors.

<u>Attention:</u>

The Free User Memory Space is located in memory which allows in total max 10'000 write operations.

Command: Info user		Modbus address: 15	68 Length: 8	Туре: 16	Write	
Parameter:	Text					
Format:	Character					
Value:	Hello World					
Figure 2.10.3.2: Example to write 16 ASCII characters to register 1568 with operator A or S.						

Command: Info user		Modbus address:	1568	Length: 8	Туре: 3	Read
Parameter:	Text					
Format:	Character					
Value:	Hello World					

Figure 2.10.3.3: Example to read the register 1568 (written in Figure 2.10.3.2).

2.11 System Commands

2.11.1 Recall Sensor's Factory Settings

Using register 8192 you can recall the sensor manufacturer values (interfaces, calibration data and passwords), except the SIP and CIP data which remain unchanged. By sending the recall value "911", all configuration values will be set to default.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write	
register	registers		function code	access	access	
8192	2	Recall by value 911	16	none	S	
Figure 2.11.1.1: Definition of register 8102						

Figure 2.11.1.1: Definition of register 8192.

Command: Recall		Modbus address: 8192		Length: 2	Type: 16	Write
Parameter:	Recall					
Format:	Decimal					
Value:	911					

Figure 2.11.1.2: Example to write the restore command.

3 Abbreviations

- AO Analog Output Interface
- CP Calibration Point
- DIO Digital Input/Output Interface
- ECS Electrochemical Sensor Interface
- PMC Primary Measurement Channel
- SMC Secondary Measurement Channel

Hamilton Bonaduz AG Via Crusch 8 CH-7402 Bonaduz Switzerland

Tel. +41 58 610 10 10 Fax +41 58 610 00 10

contact.pa.ch@hamilton.ch www.hamiltoncompany.com 22 February 2021 Manual Ref: 624428/03

HAMILT®N

