

EDO Arc Sensors

Modbus RTU Programmer's Manual

Firmware version:

EDOUM034

Important Notice

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form without written permission from Hamilton Bonaduz AG.

The contents of this manual are subject to change without notice. Technical changes reserved.

All efforts have been made to ensure the accuracy of the contents of this manual. However, should any errors be detected, Hamilton Bonaduz AG would greatly appreciate being informed of them.

The above notwithstanding, Hamilton Bonaduz AG can assume no responsibility for any errors in this manual or their consequences.

Copyright © 2021 Hamilton Bonaduz AG, Switzerland.

Rev.	Revision Date	Author	Change Description
00	19.09.2011	LW	Initial Version 00 for EDOUM013
01	13.08.2012	JB	Update to EDOUM014
02	12.11.2014	JB / LW	Update to EDOUM031/EDOUM015
03	07.07.2020	CS	Update to EDOUM032
04	22.02.2021	CS	Update to EDOUM034

Table of Content

1	MODBUS	S RTU GENERAL INFORMATION	5
		ODUCTION	
		ILTON ARC SENSORS: MODBUS COMMAND STRUCTURE	5
	1.2.1	Modbus RTU: Definitions According to Modbus IDA	
	1.2.2	Command Structure	
	1.2.3	Modbus RTU Transmission Mode	
	1.2.4	Modbus RTU Message Framing	
	1.2.5	Modbus RTU CRC Checking	
		EMENTATION OF MODBUS RTU IN HAMILTON ARC SENSORS	
	1.4 IVIOL	Modbus function code #3: Read Holding Registers	
	1.4.2	Modbus function code #4: Read Input Registers	
	1.4.3	Modbus Function Code #16: Write Multiple Registers	
		A FORMATS USED IN ARC SENSORS	. 12
	1.5.1	Float	
	1.5.2	Character	. 13
	1.5.3	Decimal	. 13
	1.6 Mod	BUS RTU ERROR MESSAGES	. 14
2	EDO AR	C SENSOR COMMANDS IN MODBUS RTU	. 15
		ERALRATOR LEVELS AND PASSWORDS	
	2.2 OPE 2.2.1		
	2.2.1	Reading / Setting Operator Level	
		FIGURATION OF THE SERIAL RS485 INTERFACE	
	2.3.1	Device Address	
	2.3.2	Baud Rate	
		FIGURATION OF THE ANALOG INTERFACES	
	2.4.1	Available Analog Interfaces	
	2.4.2	Available Analog Interface Modes	
	2.4.3	Description of the Analog Interfaces 1 and 2	
	2.4.4	Selection of an Analog Interface Mode	
	2.4.5	Configuration of the 4-20 mA Interface	
	2.4.6	Reading the Internally Measured Output Current	
		SUREMENT	
	2.5.1	Definition of Measurement Channels and Physical Units Primary Measurement Channel 1 (Oxygen)	
	2.5.2 2.5.3	Primary Measurement Channel 1 (Oxygen) Primary Measurement Channel 6 (Temperature)	
	2.5.3 2.5.4	Definition of the Measurement Status for PMC1 / PMC6	
	2.5.4	Secondary Measurement Channels 1-16	
		FIGURATION OF THE MEASUREMENT	
	2.6.1	Available Parameters	
	2.6.2	PA1: Salinity	
	2.6.3	PA2: Air Pressure	
	2.6.4	PA4: Current Offset (I offset)	
	2.6.5	PA9: Moving Average	
	2.6.6	PA12: Moving Average R	
		BRATION	
	2.7.1	Available Calibration Points	
	2.7.2	Definitions of Calibration Points	
	2.7.3	Calibration Procedure	
	2.7.4	Reading the Calibration Status	
	2.7.5	Currently active Calibration Parameters part 1	
	2.7.6	Currently active Calibration Parameters part 2	
	2.7.7	Currently active Calibration Parameters part 3	
	2.7.8 2.7.9	Currently active Calibration Parameters part 4 Currently active Calibration Parameters part 5	
	۷.۱.۶	Outreiling active Calibration Farameters part 5	. 00

2.7.10	Special Commands for Calibration with VisiCal	69
2.7.11	Calibration Standards	
2.8 SEN	ISOR STATUS	75
2.8.1	Temperature Ranges	75
2.8.2	Operating Hours, Counters and System Time	76
2.8.3	Warnings	78
2.8.4	Errors	79
2.8.5	Reading Definition of SIP and CIP	81
2.8.6	Reading the Sensor's Quality Indicator	82
2.9 SEN	ISOR IDENTIFICATION AND INFORMATION	
2.9.1	General Information	83
2.9.2	Sensor Identification	
2.9.3	Free User Memory Space	84
2.10 Sys	STEM COMMANDS	85
2.10.1	Recall Sensor's Factory Settings	85
3 ABBRE	VIATIONS	85

1 Modbus RTU general information

1.1 Introduction

This document describes in detail the electrochemical dissolved oxygen (EDO) Arc Sensors Modbus RTU interface. It is addressed to software programmers.

Chapter 1 is a general description of the Modbus RTU.

The following chapters contain the EDO Arc Sensors specific programming.

1.2 Hamilton Arc Sensors: Modbus Command Structure

This definition of the command structure is valid for all members of the Hamilton Arc Sensor family, having the following firmware versions:

ODOUM0xx (VisiFerm DO / VisiFerm DO Arc Sensor)

EPHUM0xx (pH Arc Sensors)

CONUM0xx (Conducell Arc Sensors)
 CPWUM0xx (Conducell PW Arc Sensors)

EDOUM0xx (EDO Arc Sensors)ERXUM0xx (ORP Arc Sensors)

Please check by reading register 1032 (see chapter 2.9.1):

This definition of the command structure is an additional document to the Operating Instructions of the specific sensors. Before reading this manual, the operating instructions of the sensors should be read and understood.

1.2.1 Modbus RTU: Definitions According to Modbus IDA

The definitions in chapter 1.2 are an excerpt from the document:

- "Modbus over serial line Specification and Implementation Guide V1.02" and
- "Modbus Application Protocol Specification V1.1b"

For more detailed information please consult http://www.modbus.org.

Attention:

- In this manual the register counting starts per definition at address 1. Some Modbus master protocols operate with register-count starting at address 0. Usually, the Modbus master software translates the addressing. Thus, the register address of 2088 will be translated by Modbus master software to 2087 which is sent to the sensor (Modbus slave). This must be observed during programming. Please check the specifications of the Modbus master that you are using.
- Representation of data formats in this document:
 - decimal values are displayed as numbers without any prefix, for example 256
 - hexadecimal values are displayed as: 0x2A
 - ASCII-characters or ASCII strings are displayed as: "Text"

624388/04 page 5 / 86

1.2.2 Command Structure

The Modbus application protocol defines a simple **P**rotocol **D**ata **U**nit (PDU) independent of the underlying communication layers:

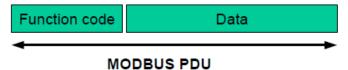


Figure 1.2.2.1: Modbus Protocol Data Unit.

The mapping of Modbus protocol on a specific bus or network introduces some additional fields on the **P**rotocol **D**ata **U**nit. The client that initiates a Modbus transaction builds the Modbus PDU, and then adds fields in order to build the appropriate communication PDU.

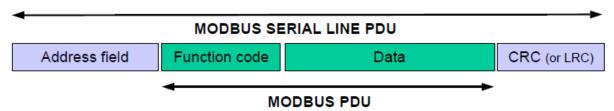


Figure 1.2.2.2: Modbus frame over Serial Line.

• On Modbus Serial Line, the Address field only contains the slave address.

Note:

Arc Sensors support only slave addresses 1 to 32.

A master addresses a slave by placing the slave address in the address field of the message. When the slave returns its response, it places its own address in the response address field to let the master know which slave is responding.

- The function code indicates to the server what kind of action to perform. The function code can be followed by a data field that contains request and response parameters.
- The CRC field is the result of a "Redundancy Checking" calculation that is performed on the message contents.

1.2.3 Modbus RTU Transmission Mode

When devices communicate on a Modbus serial line using the RTU (Remote Terminal Unit) mode, each 8-bit byte in a message contains two 4-bit hexadecimal characters. The main advantage of this mode is that its greater character density allows better data throughput than ASCII mode for the same baud rate. Each message <u>must</u> be transmitted in a continuous stream of characters.

The format (11bits) for each byte in RTU mode is:

Coding System: 8 bit binary **Bits per Byte:** 1 start bit

8 data bits, least significant bit sent first

1 bit for parity completion

1 stop bit

Remark: The use of no parity requires 2 stop bits.

624388/04

How characters are transmitted serially:

Each character or byte is sent in this order (left to right): Least Significant Bit (LSB)...Most Significant Bit (MSB)

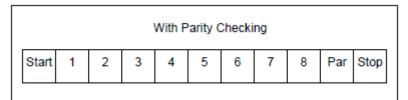


Figure 1.2.3.1: Bit sequence in RTU mode.

Frame Checking Field:

Cyclical Redundancy Checking (CRC)

Frame description:

Slave Address	Function Code	Data	CRC
1 byte	1 byte	0 up to 252 byte(s)	2 bytes CRC Low CRC Hi

Figure 1.2.3.2: RTU Message Frame.

=> The maximum size of a Modbus RTU frame is 256 bytes.

1.2.4 Modbus RTU Message Framing

A Modbus message is placed by the transmitting device into a frame that has a known beginning and ending point. This allows devices that receive a new frame to begin at the start of the message, and to know when the message is completed. Partial messages <u>must</u> be detected and errors <u>must</u> be set as a result.

In RTU mode, message frames are separated by a silent interval of <u>at least</u> 3.5 character times.

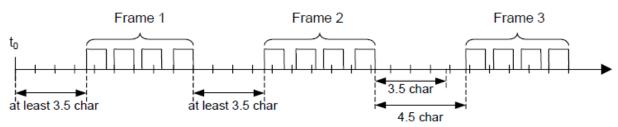


Figure 1.2.4.1: Valid frames with silent intervals.

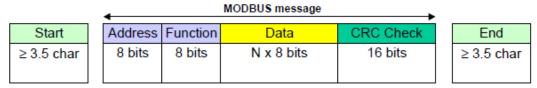


Figure 1.2.4.2: RTU Message Frame.

The entire message frame <u>must</u> be transmitted as a continuous stream of characters.

HAMILT®N

If a silent interval of more than 1.5 character times occurs between two characters, the message frame is declared incomplete and should be discarded by the receiver.

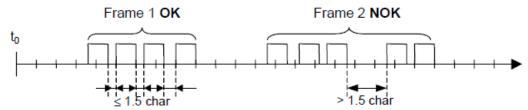


Figure 1.2.4.3: Data transmission of a frame.

1.2.5 Modbus RTU CRC Checking

The RTU mode includes an error-checking field that is based on a Cyclical Redundancy Checking (CRC) method performed on the message contents.

The CRC field checks the contents of the entire message. It is applied regardless of any parity checking method used for the individual characters of the message.

The CRC field contains a 16-bit value implemented as two 8-bit bytes.

The CRC field is appended to the message as the last field in the message. When this is done, the loworder byte of the field is appended first, followed by the high-order byte. The CRC high-order byte is the last byte to be sent in the message.

The CRC value is calculated by the sending device, which appends the CRC to the message. The receiving device recalculates a CRC during receipt of the message, and compares the calculated value to the current value it received in the CRC field. If the two values are not equal, an error results.

The CRC calculation is started by first pre-loading a 16-bit register to all 1's. Then a process begins of applying successive 8-bit bytes of the message to the current contents or the register. Only the eight bits of data in each character are used for generating the CRC. Start and stop bits and the parity bit do not apply to the CRC.

During generation of the CRC, each 8-bit character is exclusive OR-ed with the register contents. Then the result is shifted in the direction of the least significant bit (LSB), with a zero filled into the most significant bit (MSB) position. The LSB is extracted and examined. If the LSB was a 1, the register is then exclusive OR-ed with a preset, fixed value. If the LSB was a 0, no exclusive OR takes place.

This process is repeated until eight shifts have been performed. After the last (eight) shift, the next 8-bit byte is exclusive OR-ed with the register's current value, and the process repeats for eight more shifts as described above. The final content of the register, after all the bytes of the message have been applied, is the CRC value.

When the CRC is appended to the message, the low-order byte is appended first, followed by the high-order byte.

A detailed introduction to CRC generation can be found in the manual "MODBUS over Serial Line, Specification and Implementation Guide, V1.02" in chapter 6.2 "Appendix B - LRC/CRC Generation" form http://www.modbus.org.

624388/04 page 8 / 86

1.3 Implementation of Modbus RTU in Hamilton Arc Sensors

According to the official Modbus definition, the start of a command is initiated with a pause of ≥ 3.5 characters. Also the end of a command is indicated with a pause of ≥ 3.5 char.

The device address and the Modbus function code have 8 bits.

The data string consists of n*8 bits. The data string contains the starting address of the register and the number of registers to read/write.

The checksum CRC is 16 bits long.

	start	device address	function	data	Checksur	n	end
value	no signal during ≥ 3.5 char	1-32	function code according to Modbus specs	data according to Modbus specs	CRC L		No signal during ≥ 3.5 char
bytes	≥ 3.5	1	1	n	1	1	≥ 3.5

Figure 1.3.1: Modbus definition for data transmission.

The RS485 interface is configured as follows:

	Modbus RTU implementation in Hamilton Arc Sensors
Start Bits	1
Data Bits	8
Parity	none
Stop Bit	2
String length	11 Bits
Baud Rate	19200 (default), other baud rate can be configured

Figure 1.3.2: RS485 definitions for Arc Sensors.

1.4 Modbus RTU Function Codes Used for Arc Sensors

Arc Sensors use only 3 Modbus function codes:

3: Read Holding Registers# 4: Read Input Registers# 16: Write Multiple Registers

These three function codes are described below in detail using excerpts from "Modbus Application Protocol Specification V1.1b "(http://www.modbus.org).

1.4.1 Modbus function code #3: Read Holding Registers

This function code is used to read the contents of a contiguous block of holding registers in a remote device. The Request PDU specifies the starting register address and the number or registers. The PDU Registers are addressed starting at zero. Therefore registers numbered 1 – 16 are addressed as 0 – 15.

The register data in the response message are packed as two bytes per register. For each register, the first byte contains the high order bits and the second contains the low order bits.

page 9 / 86

624388/04

Request

Function code	1 Byte	0x03
Starting Address	2 Bytes	0x0000 to 0xFFFF
Quantity of Registers	2 Bytes	1 to 125 (0x7D)

Response

Function code	1 Byte	0x03
Byte count	1 Byte	2 x N*
Register value	N* x 2 Bytes	

*N = Quantity of Registers

Error

Error code	1 Byte	0x83
Exception code	1 Byte	01 or 02 or 03 or 04

Figure 1.4.1.1: Definition of Holding Registers.

Request		Response	
Field Name (Hex)		Field Name	(Hex)
Function	03	Function	03
Starting Address Hi	00	Byte Count	06
Starting Address Lo	6B	Register value Hi (108)	02
No. of Registers Hi	00	Register value Lo (108)	2B
No. of Registers Lo	03	Register value Hi (109)	00
	·	Register value Lo (109)	00
		Register value Hi (110)	00
		Register value Lo (110)	64

Figure 1.4.1.2: Example of reading holding registers 108 – 110. The contents of register 108 are read as the two byte values 0x022B. The contents of registers 109 – 110 are 0x00 00 and 0x0064.

1.4.2 Modbus function code #4: Read Input Registers

The function code is used to read from 1 to 125 contiguous input registers in a remote device. The Request PDU specifies the starting register address and the number of registers. The PDU Registers are addressed starting at zero. Therefore input registers numbered 1 - 16 are addressed as 0 - 15.

The register data in the response message are packed as two bytes per register. For each register, the first byte contains the high order bits and the second contains the low order bits.

Request

Function code	1 Byte	0x04
Starting Address	2 Bytes	0x0000 to 0xFFFF
Quantity of Input Registers	2 Bytes	0x0001 to 0x007D

Response

Function code	1 Byte	0x04
Byte count	1 Byte	2 x N*
Input Registers	N* x 2 Bytes	

^{*}N = Quantity of Input Registers

Error

Error code	1 Byte	0x84
Exception code	1 Byte	01 or 02 or 03 or 04

Figure 1.4.2.1: Definition of Input Registers.

Request		Response		
Field Name	(Hex)	Field Name	(Hex)	
Function	04	Function	04	
Starting Address Hi	00	Byte Count	02	
Starting Address Lo	08	Input Reg. 9 Hi	00	
Quantity of Input Reg. Hi	00	Input Reg. 9 Lo	0A	
Quantity of Input Reg. Lo	01	1		

Figure 1.4.2.2: Example of reading input register 9. The contents of input register 9 are read as the two byte value 0x000A.

1.4.3 Modbus Function Code #16: Write Multiple Registers

This function code is used to write a block of contiguous registers (1 to 123 registers) in a remote device. The requested values are specified in the request data field. Data is packed as two bytes per register. The response returns the function code, starting address, and quantity of registers written.

Request

Function code	1 Byte	0x10
Starting Address	2 Bytes	0x0000 to 0xFFFF
Quantity of Registers	2 Bytes	0x0001 to 0x007B
Byte Count	1 Byte	2 x N*
Registers Value	N* x 2 Bytes	value

*N = Quantity of Registers

Response

Function code	1 Byte	0x10
Starting Address	2 Bytes	0x0000 to 0xFFFF
Quantity of Registers	2 Bytes	1 to 123 (0x7B)

Error

Error code	1 Byte	0x90
Exception code	1 Byte	01 or 02 or 03 or 04

Figure 1.4.3.1: Definition of Write Multiple Registers.

Request		Response		
Field Name	(Hex)	Field Name	(Hex)	
Function	10	Function	10	
Starting Address Hi	00	Starting Address Hi	00	
Starting Address Lo	01	Starting Address Lo	01	
Quantity of Registers Hi	00	Quantity of Registers Hi	00	
Quantity of Registers Lo	02	Quantity of Registers Lo	02	
Byte Count	04			
Registers Value Hi	00			
Registers Value Lo	0A			
Registers Value Hi	01			
Registers Value Lo	02			

Figure 1.4.3.2: Example of writing the value 0x000A and 0x0102 to two registers starting at address 2.

1.5 Data Formats Used in Arc Sensors

1.5.1 Float

Definition: Floating point according to IEEE 754 (Single Precision)

Explanation:	sign	exponent	mantissa	total
Bit:	31	30 to 23	22 to 0	32
Exponent bias	127			

Figure 1.5.1.1: Definition Floating point Single Precision (4 bytes resp. 2 Modbus registers).

Example: translate the decimal value 62.85 into binary

Step 1: Conversion of the decimal value into binary fixed-point number

```
62 / 2 = 31
             residue 0 LSB
                                    0.85 * 2
                                             = 1.70
                                                       => 1 MSB
31/2 = 15 residue 1
                                    0.70 * 2
                                             = 1.40
                                                       => 1
15/2 = 7
                                    0.40 * 2
             residue 1
                                              = 0.80
                                                       => 0
                                    0.80 * 2
7/2
             residue 1
                                              = 1.60
      = 3
                                                       => 1
                                    0.60 * 2
3/2
      = 1
             residue 1
                                              = 1.20
                                                       => 1
                                    0.20 * 2
1/2
      = 0
            residue 1 MSB
                                              = 0.40
                                                       => 0
                                    0.40 * 2
      = 111110
                                              = 0.80
                                                       => 0 LSB
```

= 0.110110011001100110011001100...

62.85 = 111110.110110011001100110011001100...

Step 2: Normalizing (in order to obtain 1 bit on the left side of the fraction point)

111110.110110011001100110011001100... *2**^0** = 1.11110110110011001100110011001100... *2**^5**

Sep 3: Calculation of the dual exponent

```
2^5 => Exponent 5
Exponent + Exponent bias = 5 + 127 = 132
132 / 2 = 66 residue 0 LSB
66/2 = 33 \text{ residue } 0
33/2 = 16 residue 1
16/2 = 8 residue 0
      = 4 residue 0
8/2
      = 2 residue 0
4/2
2/2
       = 1
            residue 0
1/2
       = 0 residue 1 MSB
       = 10000100
```

Sep 4: Definition of the sign bit

```
Positive = 0
Negative = 1
= \mathbf{0}
```

Step 5: conversion into floating-point

```
1 Bit Sign + 8 Bit Exponent + 23 Bit Mantissa 0 10000100 11110110110011001100110
```

(corresponds to 0x427B6666)

One important note for the 23 Bit Mantissa: The first bit (so-called hidden bit) is not represented. The hidden bit is the bit to the left of the fraction point. This bit is per definition always 1 and therefore suppressed.

624388/04 page 12 / 86

Step 1: Separating the binary value into Sign, Exponent and Mantissa

0 10000100 1111011011001100110

1 Bit Sign + 8 Bit Exponent + 23 Bit Mantissa

```
S: 0 binary = 0 (positive sign)
E: 10000100 binary = 1*2^7 + 0*2^6 + 0*2^5 + 0*2^4 + 0*2^3 + 1*2^2 + 0*2^1 + 0*2^0
= 128 + 0 + 0 + 0 + 0 + 4 + 0 + 0
= 132
```

M: 11110110110011001100110 binary = 8087142

Step 2: Calculate the decimal value

```
D = (-1)^{S} * (1.0 + M/2^{23}) * 2^{E-127}
= (-1)^{0} * (1.0 + 8087142/2^{23}) * 2^{132-127}
= 1 * 1.964062452316284 * 32
= 62.85
```

1.5.2 Character

Definition:

The numerical representation of characters is defined in 8-Bit ASCII-Code-Table (ANSI X3.4-1986). Accordingly, each Modbus register in Arc Sensors can store two ASCII characters.

Example: translate the ASCII-string "2076" to Hex representation

The following interpretation is made according to the ASCII Codes-Table:

```
"2" => ASCII code table => 0x32 Low Byte
"0" => ASCII code table => 0x30
"7" => ASCII code table => 0x37
"6" => ASCII code table => 0x36 High Byte
"2076" => 0x36373032
```

1.5.3 Decimal

Example: translate Decimal 2227169 to Hex

```
2227169 / 16
              = 139198
                         residue 1 Low Byte
139198 / 16
              = 8699
                         residue 14 => E
              = 543
8699 / 16
                         residue 11 => B
                         residue 15 => F
543 / 16
              = 33
                         residue 1
33/16
              = 2
              = 0
                         residue 2 High Byte
2/16
              = 0x21FBE1
```


1.6 Modbus RTU Error Messages

Here are listed the Modbus standard error-codes we have implemented in Arc Sensors.

Error-Code	Status-Text
Hex	
0x00	OK
0x01	Illegal function
0x02	Illegal data address
0x03	Illegal data value
0X04	Slave device failure

Figure 1.6.1: implemented Error-Codes (see "Modbus_Application_Protocol_V1.1b" for details)

624388/04 page 14 / 86

2 EDO Arc Sensor Commands in Modbus RTU

2.1 General

In order to communicate with an EDO Arc Sensor over Modbus RTU protocol a Modbus master terminal application software is needed. The Modbus RTU is an open standard and a number of free and commercial application toolkits are available.

This manual contains examples and illustrations from WinTECH Modbus Master ActiveX Control tool: WinTECH (www.win-tech.com) "Modbus Master OCX for Visual Basic". The Modbus Organisation (www.modbus.org/tech.php) provides other links to a wide variety of Modbus terminal software.

In the present manual the addressing of the Modbus registers starts at 1. But the Modbus master protocol operates with register addresses starting at 0. Usually, the Modbus master software translates the addressing. Thus, the register address of 2090 will be translated by the Modbus master software to 2089 which is sent to the sensor (Modbus slave).

Attention:

When configuring and calibrating the sensor, please limit write operations to a reasonable number. More than 100'000 write operations will physically damage the memory of the sensor. Furthermore, for the Free User Memory Space (see chapter 2.9.3), the write operations are limited to 10'000.

2.2 Operator levels and Passwords

2.2.1 Reading / Setting Operator Level

An EDO Arc Sensor can be operated in three different operator levels. Each operator level allows a defined access to a specific set of commands.

Abbreviation	Description	Code (hex)	Password (decimal)
U	User (lowest level)	0x03	0
Α	Administrator	0x0C	18111978
S	Specialist	0x30	16021966

Figure 2.2.1.1: Definition of operator level and default passwords

At each power up or processor reset, the operator level falls back to the default level U.

The active operator level can be read and written in register 4288.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers			function code	access	access
4288	4	Operator Level	Password	3, 4, 16	U/A/S	U/A/S

Figure 2.2.1.2: Definition of register 4288.

Command: Active operator level Modbus		Modbus address:	4288	Length: 4	Type: 3	Read
Parameter:	Operator level	Password				
Format:	hex	decimal				
Value:	0x03	0				

Figure 2.2.1.3: Example to read the active operator level (function code 3, start register address 4288, number of registers 4): The active operator level is 0x03 (User). The sensor does not report the password. The value 0 is returned instead.

624388/04 page 15 / 86 **HAMILT®N**

Command: C	perator level	Modbus address:	4288	Length: 4	Type: 3	Read
Parameter:	Operator level	Password				
Format:	Hex	decimal				
Value:	0x30	0				

Figure 2.2.1.4: Example to read the active operator level: the active level is 0x30 (Specialist). The sensor does not report the password. The value 0 is returned instead.

Command: Operator level		Modbus address:	4288	Length: 4	Type: 16	Write
Parameter:	Operator level	Password				
Format:	Hex	decimal				
Value:	0x03	0				

Figure 2.2.1.5: Example to set the operator level to 0x03 (User). The password 0 has to be sent.

Command: Operator level		Modbus address: 4288		Length: 4	Type: 16	Write
Parameter:	Operator level	Password				
Format:	Hex	decimal				
Value:	0x0C	18111978				

Figure 2.2.1.6: Example to set the active operator level to 0xC (Administrator). The correct password has to be sent.

Command: Operator level		Modbus address: 4288		Length: 4	Type: 16	Write
Parameter:	Operator level	Password				
Format:	Hex	decimal				
Value:	0x0B	18111978				

Figure 2.2.1.7: Example for a Modbus error. If the level or the password is not correct, (Operator level = 0x0B), the sensor answers with a Modbus error message "Slave device exception response" (see chapter 1.6, "VisiFerm DO Modbus RTU Programmer's Manual" (p/n 624179/03).

2.2.2 Changing Passwords for Operator Level

The passwords for accessing the operator levels A and S can be modified by S (Specialist) only. U (User) and A (Administrator) have no right to change any password. The new password will remain stored after power down.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers			function code	access	access
4292	4	Level	New password	16	None	S

Figure 2.2.2.1: Definition of register 4292.

Command: Password		Modbus address: 4292		Length: 4	Type: 16	Write
Parameter:	Operator level	Pass number				
Format:	Hex	Decimal				
Value:	0x30	12345678				

Figure 2.2.2.2: Example to set the Password of operator level S (code 0x30) to 12345678.

HAMILT®N

2.3 Configuration of the serial RS485 Interface

Factory settings of the RS485:

Parity is none, 1 start bit, 8 data bits, 2 stop bits (in total: 11 bits).

2.3.1 Device Address

2.3.1.1 Reading and Writing the Device Address

The sensor specific device address can be read and written in register 4096.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
4096	2	device address	3, 4, 16	U/A/S	S

Figure 2.3.1.1.1: Definition of register 4096.

Command: Com address		Modbus address:	4096	Length: 2	Type: 3	Read
Parameter:	Modbus address					
Format:	Decimal					
Value:	1					

Figure 2.3.1.1.2: Example to read the device address.

The device address can be set by S (Specialist), default value is 1.

Command: Com address		Modbus address:	4096	Length: 2	Type: 16	Write
Parameter:	Modbus address					
Format:	Decimal					
Value:	3					

Figure 2.3.1.1.3: Example to set the device address to 3.

2.3.1.2 Reading the Device Address Limits

The device address limits can be read in register 4098.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers			function code	access	access
4098	4	Min. device	Max. device	3, 4	U/A/S	none
		address	address			

Figure 2.3.1.2.1: Definition of register 4098.

Command: Com address limits		Modbus address: 4098		Length: 4	Type: 3	Read
Parameter:	Min value	Max value				
Format:	Decimal	Decimal				
Value:	1	32				

Figure 2.3.1.2.2: Example to read the device address limits: Min = 1, Max = 32.

624388/04 page 17 / 86

2.3.2 Baud Rate

2.3.2.1 Reading and Writing the Baud Rate

The baud rate can be read and written in register 4102.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
4102	2	Baud rate code	3, 4, 16	U/A/S	S
		(definition see below)			

Figure 2.3.2.1.1: Definition of register 4102.

The code for the baud rate is defined as follows:

Baud rate	4800	9600	19200	38400	57600	115200
Code	2	3	4	5	6	7

Figure 2.3.2.1.2: Code for the baud rates.

Command: Com baud rate		Modbus address: 4	1102	Length: 2	Туре: 3	Read
Parameter:	Baud rate code					
Format:	Decimal					
Value:	4					

Figure 2.3.2.1.3: Example to read the baud rate code, 4 corresponds 19200 baud.

The baud rate can be set by S (Specialist), default is 19200.

Command: Com baud rate		Modbus address: 41	02 Length: 2	Type: 16	Write
Parameter:	Baud rate code				
Format:	Decimal				
Value:	5				

Figure 2.3.2.1.4: Example to set the baud rate to 38400 baud with code 5.

2.3.2.2 Reading the Baud Rate Limits

The baud rate limits can be read in register 4104.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers			function code	access	access
4104	4	Min. Baud rate	Max. Baud rate	3, 4	U/A/S	none
		code	code			

Figure 2.3.2.2.1: Definition of register 4104.

Command: Com baud limits		Modbus address: 4104		Length: 4	Type: 3	Read
Parameter:	Min Baud rate code	Max Baud rate code				
Format:	Decimal	Decimal				
Value:	2	7				

Figure 2.3.2.2.2: Example to read the baud rate code limits: Min = 2, Max = 7 (see Figure 2.3.2.1.2).

HAMILT®N

2.4 Configuration of the Analog Interfaces

2.4.1 Available Analog Interfaces

An EDO Arc Sensor has two individual physical analog interfaces that have identical functionalities, but can be configured independently from each other.

- Analog Output Interface 1 (AO1)
- Analog Output Interface 2 (AO2)

The number of analog interfaces is defined in register 4320.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
4320	2	Available analog interfaces	3, 4	U/A/S	none

Figure 2.4.1.1: Definition of register 4320.

Command: A	Command: Avail analog interfaces		4320	Length: 2	Type: 3	Read
Parameter:	Available analog					
	interfaces					
Format:	Hex					
Value:	0x03					

Figure 2.4.1.2: Example to read the available analog interfaces. The answer is "0x03" meaning that there exists an Analog Interface 1 (AO1) and an Analog Interface 2 (AO2).

2.4.2 Available Analog Interface Modes

624388/04

With register 4322, the available analog interface modes for AO1 and AO2 are defined

Start	Number of	Reg1 /	Reg3 /	Reg5 /	Reg7 /	Modbus	Read	Write
register	registers	Reg2	Reg4	Reg6	Reg8	function	access	access
						code		
4322	8	Available Analog Interface Modes for AO1	Available Analog Interface Modes for AO2	reserved	reserved	3,4	U/A/S	none

Figure 2.4.2.1: Definition of register 4322. It defines the analog interface modes available for AO1 and AO2. The analog interface modes are described in Figure 2.4.2.2.

Code	Analog Interface	Description
(Hex)	Mode	
0x00	4-20 mA inactive	Analog interface deactivated
0x01	4-20 mA fixed	Set to a constant output value for current loop testing
0x02	4-20 mA linear	Linear output of measurement (PMC1 / 6)
0x04	4-20 mA bilinear	Bilinear output of measurement (PMC1 / 6)

Figure 2.4.2.2: Definition of the analog interface modes, valid for both AO1 and AO2.

Command: A	nalog Interface Modes	Modbus address:	4322 L	_ength: 8	Type: 3	Read
Parameter:	Available Analog	Available Analog	reserved		reserved	
	Interface Modes for	Interface Modes for				
	AO1	AO2				
Format:	Hex	Hex	Hex		Hex	
Value:	0x07	0x07	0x0		0x0	

Figure 2.4.2.3: Example to read register 4322: all modes defined in Figure 2.4.2.2 are available for both AO1 and AO2.

page 19 / 86 **HAMILT®N**

2.4.3 Description of the Analog Interfaces 1 and 2

Register 4352 / 4480 contain the descriptions of AO1 / AO2 as plain text ASCII:

Start	Number of	Reg1 to Reg8	Modbus	Read	Write
register	registers	16 ASCII characters	function code	access	access
4352	8	Description of AO1	3, 4	U/A/S	none
4480	8	Description of AO2	3, 4	U/A/S	none

Figure 2.4.3.1: Definition of register 4352 and 4480

Command: Current interface text		Modbus address:	4352	Length: 8	Type: 3	Read
Parameter:	Text					
Format:	Character					
Value:	mA interface #1					

Figure 2.4.3.2: Example to read the description of AO1. The text is "**mA** interface #1". Accordingly, AO1 is physically configured as a 4-20 mA current output.

Command: Current interface text		Modbus address:	4480	Length: 8	Type: 3	Read
Parameter:	Text					
Format:	Character					
Value:	mA interface #2					

Figure 2.4.3.3: Example to read the description of AO2. The text is "**mA interface #2**". Accordingly, AO2 is physically configured as a 4-20 mA current output.

Attention:

- EDO Arc Sensors do not have an ECS (in contrast to VisiFerm DO)!
- Data structure: register address offset between AO1 and AO2 is always 128.

2.4.4 Selection of an Analog Interface Mode

The analog interface mode of AO1 / AO2 is selected by programming the analog interface mode in register 4360 / 4488.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
4360	2	Active analog interface mode for AO1	3, 4, 16	U/A/S	S
4488	2	Active analog interface mode for AO2	3, 4, 16	U/A/S	S

Figure 2.4.4.1: Definition of register 4360 / 4488. Only one bit can be set.

Command: Active interface mode		Modbus address:	4360	Length: 2	Type: 16	Write
Parameter:	Mode					
Format:	Hex					
Value:	0x02					

Figure 2.4.4.2: Example to set the analog interface mode of AO1 to 0x02 (4-20 mA linear output).

624388/04 page 20 / 86

2.4.5 Configuration of the 4-20 mA Interface

Note:

The configuration of AO1 / AO2 is only effective if register 4360 / 4488 (active analog interface mode) is set to the value 0x01, 0x02 or 0x04.

2.4.5.1 Reading the Available Primary Measurement Channels to be Mapped to the Analog Output

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
4362	2	Available Primary Measurement Channels	3, 4	U/A/S	none
		for AO1			
4490	2	Available Primary Measurement Channels	3, 4	U/A/S	none
		for AO2			

Figure 2.4.5.1.1: Definition of register 4362 / 4490.

For the definition of the Primary Measurement Channels (PMC), see chapter 2.5.

Code (Hex)	Primary Measurement Channel (PMC)
0x01	PMC1 (oxygen)
	not available
0x20	PMC6 (temperature)

Figure 2.4.5.1.2: Code for selection of the primary measurement channel.

Command: A	Command: Available PMC AO1		4362	Length: 2	Type: 3	Read
Parameter:	Available PMC 20 mA					
Format:	hex					
Value:	0x21					

Figure 2.4.5.1.3: Example to read the available Primary Measurement Channels (PMC) for AO1. The hexadecimal value of "0x21" defines that PMC1 (oxygen) or PMC6 (temperature) can be mapped to AO1. Register 4490 contains the same value "0x21". Accordingly, PMC1 or PMC6 can be mapped to AO2 as well.

2.4.5.2 Selecting the Primary Measurement Channel to be Mapped to the Analog Interface

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
4364	2	Selected PMC for AO1	3, 4, 16	U/A/S	S
4492	2	Selected PMC for AO2	3, 4, 16	U/A/S	S

Figure 2.4.5.2.1: Definition of register 4364 / 4492. Only one bit can be set.

Command: Active PMC AO1		Modbus address: 4	1364	Length: 2	Type: 3	Read
Parameter:	Current PMC 20mA					
Format:	hex					
Value:	0x01					

Figure 2.4.5.2.2: Example to read the current primary measurement channel mapped to AO1, defined in register 4364. The value "0x01" is returned, saying that PMC1 is mapped to AO1 (factory setting).

The factory setting for register 4492 is "0x20", mapping PMC6 to AO2.

page 21 / 86 **HAMILT®N**

2.4.5.3 Reading the Minimum and Maximum Possible Physical Output Current

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers			function code	access	access
4366	4	Min physical output current for AO1 [mA]	Max physical output current for AO1 [mA]	3, 4	U/A/S	none
4494	4	Min physical output current for AO2 [mA]	Max physical output current for AO2 [mA]	3, 4	U/A/S	none

Figure 2.4.5.3.1: Definition of register 4366 / 4494

Command: L	imits AO1	Modbus address:	4366	Length: 4	Type: 3	Read
Parameter:	Min limit [mA]	Max limit [mA]				
Format:	Float	Float				
Value:	3.5	22				

Figure 2.4.5.3.2: Example to read the min and max output current of AO1. Min is fixed to 3.5 and Max is fixed to 22 mA (Currents above 20 and below 4 mA indicate erroneous measurements or errors).

The same values are stored in register 4494 for AO2.

2.4.5.4 Reading the Minimum, Maximum and Mid Current for Measurement Value Output

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus	Read	Write
register	registers				function	access	access
					code		
4370	6	Min output for measurement value for AO1 [mA]	Max output for measurement values for AO1 [mA]	Mid output (bilinear) for measurement values for AO1 [mA]	3, 4	U/A/S	none
4498	6	Min output for measurement value for AO2 [mA]	Max output for measurement values for AO2 [mA]	Mid output (bilinear) for measurement values for AO2 [mA]	3, 4	U/A/S	none

Figure 2.4.5.4.1: Definition of register 4370 / 4498

Command: M	MinMaxMid current AO1	Modbus address:	4370	Length: 6	Type: 3	Read
Parameter:	Min current [mA]	Max current [mA]	Mid cu	ırrent [mA]		
Format:	Float	Float	Float			
Value:	4	20	12			

Figure 2.4.5.4.2: Example to read the min, max and mid output current for measurement values for AO1. They are fixed to 4, 20 and 12 mA.

The same values are stored in register 4498 for AO2.

Note:

Mid current must always be defined. However, in linear output mode, the mid current value has no physical meaning and will not affect the 4-20 mA output.

624388/04 page 22 / 86

2.4.5.5 Reading the Selected Physical Unit for Analog Interface

Start register	Number of registers	Reg1 / Reg2	Modbus function code	Read access	Write access
4376	2	Selected physical unit of AO1 (see chapter 2.5.1)	3, 4	U/A/S	none
4504	2	Selected physical unit of AO2 (see chapter 2.5.1)	3, 4	U/A/S	none

Figure 2.4.5.5.1: Definition of register 4376 / 4504.

Command: Avail unit AO1		Modbus address:	4376	Length: 2	Type: 3	Read
Parameter:	Available unit					
Format:	Hex					
Value:	0x000020					

Figure 2.4.5.5.2: Example to read the selected unit of the selected PMC of AO1. The value returned is "0x000020", accordingly, the unit is %-sat. The physical unit for PMC is defined in Reg. 2090 or 2410 and applies automatically for 4-20 mA output.

2.4.5.6 Defining the Measurement Values for 4, 12 and 20 mA Output

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus function code	Read access	Write access
4378	6	Measurement value at Min Output Current (4 mA) for AO1	Measurement value at Max Output Current (20 mA) for AO1	Measurement value at Mid Output Current (12 mA) for AO1	3, 4, 16	U/A/S	S
4506	6	Measurement value at Min Output Current (4 mA) for AO2	Measurement value at Max Output Current (20 mA) for AO2	Measurement value at Mid Output Current (12 mA) for AO2	3, 4, 16	U/A/S	S

Figure 2.4.5.6.1: Definition of register 4378 / 4506.

Command: N	MinMaxMid value AO1	Modbus address:	4378	Length: 6	Type: 16	Write
Parameter:	Min value	Max value	Mid v	alue		
Format:	Float	Float	Float			
Value:	0	62.85	10			

Figure 2.4.5.6.2: Example to set the min value to 0 (for 4 mA), the max value to 62.85 (for 20 mA) and the mid value to 10 (for 12 mA). The corresponding physical unit can be read in register 4376 / 4504 and in 2090 / 2410.

Note:

Mid current must always be defined. However, in linear output mode, the mid current value has no physical meaning and will not affect the 4-20 mA output.

HAMILT®N

624388/04 page 23 / 86

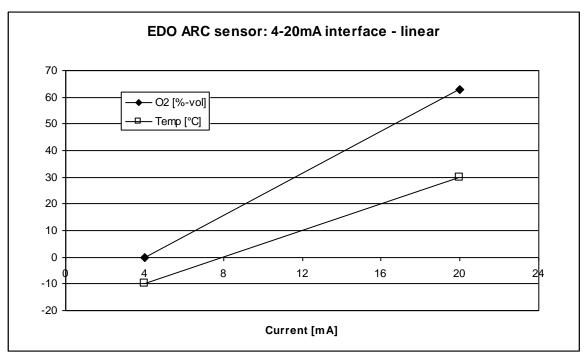


Figure 2.4.5.6.3: Example of linear 4-20 mA output characteristics for oxygen or temperature.

Current	Oxygen	Temperature
4 mA	0 %-vol	-10°C
20 mA	62.85 %-vol	+30°

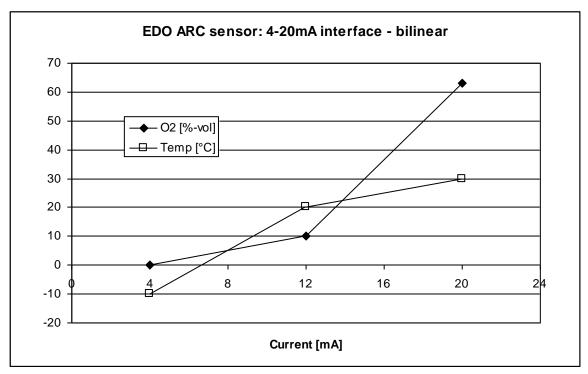


Figure 2.4.5.6.4: Example of bilinear 4-20 mA output characteristics for oxygen or temperature.

Oxygen	Temperatu
0 %-vol	-10°C
10 %-vol	+20°C
62.85 %-vol	+30°C
	0 %-vol 10 %-vol

Attention:

When assigning measurement values to 4-20 mA analog output by using register 4378 / 4506, you need to consider the following:

- The PMC you have mapped to AO1 / AO2 (register 4364 / 4492)
- The physical unit currently in use for the selected PMC (register 2090 for PMC1 (oxygen) and register 2410 for PMC6 (temperature).

Therefore, when the operator redefines one of the register 4364 / 4492, 2090 / 2410, the definitions of the register 4378 / 4506 should be reviewed. If not, the current output at the 4-20 mA interfaces may be wrong.

Note:

The physical unit of the analog output corresponds always to the unit that is set for the selected PMC (register 2090 for PMC1 or register 2410 for PMC6). Accordingly, not only oxygen partial pressure (mbar, %-vol, %-sat) is selectable at the 4-20 mA interface, but also oxygen concentration (mg/l, μ g/l, ppb, ppm).

Example:

Register 4364 is set to 1 (PMC1 (oxygen) is mapped to AO1).

Register 2090 is set to 16 (the unit "%-vol" is assigned to PMC1).

Register 4378 is set to 0 and 62.85 (4 mA = 0 %-vol, 20 mA = 62.85 %-vol).

In air, the sensor reads 20.95 %, the output at the 4-20 mA is accordingly 9.33 mA.

The operator now re-assigns register 2090 to the value of 32 (%-sat), but does not modify all other registers. The sensor reads now 100 %-sat. At the analog output, as 20 mA is programmed to a value of 62.85 by register 4378, the current will go to the maximum value of 20 mA. This will generate an interface warning.

2.4.5.7 Defining a Constant Current Output for Testing

Note:

For constant current output, the AO1 / AO2 must be set to analog interface mode 0x01:

Start register	Number of registers	Reg1 / Reg2	Modbus function code	Read access	Write access
4384	2	Constant current output value for AO1 [mA]	3, 4, 16	U/A/S	S
4512	2	Constant current output value for AO2 [mA]	3, 4, 16	U/A/S	S

Figure 2.4.5.7.1: Definition of register 4384 / 4512.

Command: Fixed value AO1		Modbus address: 4	4384	Length: 2	Type: 3	Read
Parameter:	Fixed value [mA]					
Format:	Float					
Value:	10					

Figure 2.4.5.7.2: Example to read the constant current output in mode 0x01 for AO1. It is set to 10 mA.

624388/04 page 25 / 86

2.4.5.8 Defining the Error and Warning Output of the 4-20 mA Interface

Errors and warnings can be mapped to the AO1 / AO2.

Start	Number of	Reg1 /	Reg3 /	Reg5 /	Reg7 /	Modbus	Read	Write
register	registers	Reg2	Reg4	Reg6	Reg8	function	access	access
						code		
4386	8	Code of	Current	Current	Current in	3, 4, 16	U/A/S	S
		warnings	in case of	in case of	case of			
		and errors	"warning"	"error"	"T exceed"			
		(see Figure	[mA]	[mA]	[mA]			
		2.4.5.8.2)	for AO1	for AO1	for AO1			
		for AO1						
4514	8	Code of	Current	Current	Current in	3, 4, 16	U/A/S	S
		warnings	in case of	in case of	case of			
		and errors	"warning"	"error"	"T exceed"			
		(see Figure	[mA]	[mA]	[mA]			
		2.4.5.8.2)	for AO2	for AO2	for AO2			
		for AO2						

Figure 2.4.5.8.1: Definition of register 4386 / 4514.

Bit #	Code (hex)	Behaviour of the 4-20 mA interface in case of errors and warnings
0 (LSB)	0x000001	Error continuous output
		not available
16	0x010000	Warning continuous output
		not available

Figure 2.4.5.8.2: Code for the 4-20 mA interface in case of errors and warnings.

If the corresponding bits for the errors and warnings are not set (=0x00), the respective options are inactive.

The default settings are:

Code 0x01

current in case of warnings: 3.5 mA
 current in case of errors: 3.5 mA
 current in case of temperature exceed: 3.5 mA

Command: E	rrorWarnings AO1	Modbus address:	4386 Length: 8	Type: 3 Read
Parameter:	Warning code	Current in case of	Current in case of	Current in case of
		warning	error	temperature exceed
		[mA]	[mA]	[mA]
Format:	Hex	Float	Float	Float
Value:	0x010001	3.5	3.5	3.5

Figure 2.4.5.8.3: Example: Read the settings for AO1 in case of warnings and errors. Warning code 0x010001 corresponds to the continuous output current in case of warning (0x010000) and continuous output current in case of error (0x01) of 3.5 mA. The output current in case of temperature exceed is 3.5 mA.

HAMILT®N

2.4.6 Reading the Internally Measured Output Current

Reg. 4414 / 4542 provides internal parameters of AO1 / AO2:

- the setpoint to which the current is regulated in a closed loop control
- the electrical current the sensor is measuring to feed the closed loop control

These values are helpful in order to compare against the externally measured electrical current.

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Modbus function code	Read access	Write access
4414	4	Set point [mA] AO1	Internally measured [mA] AO1	3, 4	U/A/S	none
4542	4	Set point [mA] AO2	Internally measured [mA] AO2	3, 4	U/A/S	none

Figure 2.4.6.1: Definition of register 4414 / 4542.

Command: Ir	nternal values AO1	Modbus address: 4414		Length: 4	Type: 3	Read
Parameter:	Set point	Internally measured				
	[mA]	[mA]				
Format:	Float	Float				
Value:	9.99186	9.99742				

Figure 2.4.6.2: Example to read the internal values of AO1, depending on the analog interface mode.

624388/04 page 27 / 86

2.5 Measurement

2.5.1 Definition of Measurement Channels and Physical Units

The EDO Arc Sensor Modbus register structure allows the definition of 6 individual Primary Measurement Channels (PMC), and 16 individual Secondary Measurement Channels (SMC).

Bit #	Hex code	Description	Definition
0 (LSB)	0x000001	PMC1	Oxygen
1	0x000002	PMC2	not available
			not available
4	0x000010	PMC5	not available
5	0x000020	PMC6	Temperature
6	0x000040	SMC1	R cathode
7	0x000080	SMC2	not available
8	0x000100	SMC3	I cathode
9	0x000200	SMC4	not available
10	0x000400	SMC5	E ref vs. anode
11	0x000800	SMC6	not available
12	0x001000	SMC7	not available
13	0x002000	SMC8	DO act
14	0x004000	SMC9	T act
15	0x008000	SMC10	not available
21 (MSB)	0x200000	SMC16	not available

Figure 2.5.1.1: full list of PMC1 to 6 and SMC1 to 16.

In Register 2048, the available PMC and SMC are defined for a specific EDO Arc Sensors and a specific operator level.

Start register	Number of registers	Reg1 / Reg2	Modbus function code	Read access	Write access
2048	2	Available measurement channels PMC and SMC (bitwise set)	3, 4	U/A/S	none

Figure 2.5.1.2: Definition of register 2048.

Command: A	vail. PMC and SMC	Modbus address:	2048	Length: 2	Type: 3	Read
Parameter:	Avail. PMC and					
	SMC					
Format:	Hex					
Value:	0x0161					

Figure 2.5.1.3: Example to read Reg. 2048 for EDO Arc Sensor.

In case of operator A/U, the value 0x0161 is returned. In other words the following PMC and SMC are available to A/U: PMC1 / PMC6 / SMC1 / SMC3

In case of operator S, the value 0x06561 is returned. In other words the following PMC and SMC are available to S: PMC1 / PMC6 / SMC1 / SMC3 / SMC5 / SMC8 / SMC9

HAMILT®N

624388/04 page 28 / 86

The EDO Arc Sensor register structure uses the following physical units used for Primary or Secondary Measurement Channels.

Bit #	Hex code	Physical unit	Start register. (8 ASCII characters, length 4 registers, Type 3, read for U/A/S)
0 (LSB)	0x00000001	none	1920
1	0x00000001	K	1924
2	0x00000004	°C	1928
3	0x00000001	°F	1932
4	0x00000010	%-vol	1936
5	0x00000020	%-sat	1940
6	0x00000040	ug/l ppb	1944
7	0x00000080	mg/l ppm	1948
8	0x00000100	g/l	1952
9	0x00000200	uS/cm	1956
10	0x00000400	mS/cm	1960
11	0x00000800	1/cm	1964
12	0x00001000	pH	1968
13	0x00002000	mV/pH	1972
14	0x00004000	kOhm	1976
15	0x00008000	MOhm	1980
16	0x00010000	pA	1984
17	0x00020000	nA	1988
18	0x00040000	uA	1992
19	0x00080000	mA	1996
20	0x00100000	uV	2000
21	0x00200000	mV	2004
22	0x00400000	V	2008
23	0x00800000	mbar	2012
24	0x01000000	Pa	2016
25	0x02000000	Ohm	2020
26	0x04000000	%/°C	2024
27	0x08000000	0	2028
28	0x10000000	not used	2032
29	0x20000000	not used	2036
30	0x40000000	not used	2040
31 (MSB)	0x80000000	SPECIAL	2044

Figure 2.5.1.4: Definition of physical units used for PMC and SMC.

Command: U	Init text	Modbus address:	1936	Length: 4	Type: 3	Read
Parameter:	Text					
Format:	Character					
Value:	%-vol					

Figure 2.5.1.5: Example to read the physical unit in plain text ASCII in register 1936

624388/04 page 29 / 86

2.5.2 Primary Measurement Channel 1 (Oxygen)

2.5.2.1 Description of PMC1

In register 2080, a plain text ASCII description of PMC1 is given.

Start	Number of	Reg1 to Reg8	Modbus	Read	Write
register	registers	16 ASCII characters	function code	access	access
2080	8	Description of PMC1	3, 4	U/A/S	none

Figure 2.5.2.1.1: Definition of register 2080.

Command: PMC 1 text		Modbus address:	Modbus address: 2080		Type: 3	Read
Parameter: Text						
Format:	Character					
Value:	DO					

Figure 2.5.2.1.2: Example to read the description. It is "DO".

2.5.2.2 Selecting the Physical Unit for PMC1

In register 2088, the available physical units for this channel are defined.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
2088	2	Available physical units of PMC1	3, 4	U/A/S	none

Figure 2.5.2.2.1: Definition of register 2088.

Command: PMC1 available units		Modbus address:	Modbus address: 2088		Type: 3	Read
Parameter:	Units					
Format:	Hex					
Value:	0x8000F0					

Figure 2.5.2.2: Example to read the available physical units of PMC1: %-vol (0x10), %-sat (0x20), ug/l ppb (0x40), mg/l ppm (0x80), mbar (0x800000), total 0x8000F0.

In register 2090, the active physical unit for this channel can be selected, by choosing one of the physical units that are defined in register 2088.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
2090	2	Selected active physical unit for the	16	none	S
		PMC1			

Figure 2.5.2.2.3: Definition of register 2090. Only one bit can be set.

Command: PMC1 set unit		Modbus address:	2090	Length: 2	Type: 16	Write
Parameter:	Unit					
Format:	Hex					
Value:	0x20					

Figure 2.5.2.2.4: Example to set the physical unit of PMC1 to %-sat (0x20).

Attention

Changing the physical unit has also an influence on the output of AO1 / AO2, as the same physical unit is active for the analog outputs. All limits of the 4-20 mA analog output have to be redefined after changing the physical unit!

624388/04 page 30 / 86

2.5.2.3 Reading the measurement value of PMC1

Register 2090 is also used to read the measurement values of PMC1.

Start	Num-	Reg1 /	Reg3 /	Reg5 /	Reg7 /	Reg9 /	Modbus	Read	Write
reg.	ber of	Reg2	Reg4	Reg6	Reg8	Reg10	function	access	access
	reg.						code		
2090	10	Selected physical unit	Measure -ment value of PMC1 (1)	Measure -ment status (2)	Min allowed value (1)	Max allowed value (1)	3, 4	U/A/S	none

Figure 2.5.2.3.1: Definition of register 2090. Measurement value of PMC1.

⁽²⁾ Definition of the status see chapter 2.5.4. All bits set to zero means: no problem.

Command: PMC1 read		Modbus	address: 2090	Length: 10 Ty	pe: 3 Read
Parameter:	Unit	Value	Status	Min limit	Max limit
Format:	Hex	Float	Hex	Float	Float
Value:	0x10	21.10335	0x00	0	62.85

Figure 2.5.2.3.2: Example to read register 2090. Physical unit is set to 0x10 (%-vol), PMC1 is 21.10 (%-vol), Status is 0x00, Min allowed value is 0 (%-vol), Max allowed value is 62.85 (%-vol).

Command: PMC1 read		Modbus	address: 2090	Length: 10 Ty	pe: 3 Read
Parameter:	Unit	Value	Status	Min limit	Max limit
Format:	Hex	Float	Hex	Float	Float
Value:	0x20	100.5764	0x00	0	954.6541

Figure 2.5.2.3.3: Example to read register 2090. Physical unit is set to 0x20 (%-sat), PMC1 is 100.57 (%-sat), Status is 0x00, Min allowed value is 0 (%-sat), Max allowed value is 954.65 (%-sat).

For the definition of the measurement status see chapter 2.5.4.

Attention:

You cannot read selectively the registers 3 and 4 for the measurement value only. You have to read the entire length of the command (10 registers) and extract the desired information.

624388/04 page 31 / 86

⁽¹⁾ Value is always in the physical unit defined in register 2090.

2.5.3 Primary Measurement Channel 6 (Temperature)

2.5.3.1 Description of PMC6

In register 2400, a plain text ASCII description of PMC6 is given

Start	Number of	Reg1 to Reg8	Modbus	Read	Write
register	registers	16 ASCII characters	function code	access	access
2400	8	Description of PMC6	3, 4	U/A/S	none

Figure 2.5.3.1.1: Definition of register 2400.

Command: PMC6 text		Modbus address:	2400	Length: 8	Type: 3	Read
Parameter:	Text					
Format:	Character					
Value:	Т					

Figure 2.5.3.1.2: Example to read the description. It is "T" (Temperature).

2.5.3.2 Selecting the Physical Unit for PMC6

In register 2408, the available physical units of PMC6 are defined.

S	tart	Number of	Reg1 / Reg2	Modbus	Read	Write
re	egister	registers	(bitwise defined)	function code	access	access
24	408	2	Available physical units of PMC6	3, 4	U/A/S	none

Figure 2.5.3.2.1: Definition of register 2408.

Command: PMC6 available units		Modbus address:	Modbus address: 2408		Type: 3	Read
Parameter:	Units					
Format:	Hex					
Value:	0x0E					

Figure 2.5.3.2.2: Example to read the available physical unit for PMC6. K (0x02), °C (0x04), °F (0x08), total 0x0E.

In register 2410, the active physical unit of PMC6 can be selected, by choosing one of the physical units that are defined in register 2408.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
2410	2	Selected active physical unit of PMC6	16	none	U/A/S

Figure 2.5.3.2.3: Definition of register 2410. Only one bit can be set.

Command: PMC6 set unit		Modbus address: 2	Modbus address: 2410		Type: 16	Write
Parameter:	Unit					
Format:	Hex					
Value:	0x04					

Figure 2.5.3.2.4: Example to set the physical unit of PMC6 to °C (0x04).

Attention:

Changing the physical unit has also an influence on the output of AO1 / AO2, as the same physical unit is active for the analog outputs. All limits of the 4-20 mA analog output have to be redefined after changing the physical unit!

624388/04 page 32 / 86

2.5.3.3 Reading the measurement value of PMC6

Register 2410 is also used to read the measurement values of PMC6.

Start reg.	Num- ber of reg.	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Reg9 / Reg10	Modbus function code	Read access	Write access
2410	10	Selected physical unit	Measure -ment value of PMC6 (1)	Measure -ment status (2)	Min allowed value (1)	Max allowed value (1)	3, 4	U/A/S	none

Figure 2.5.3.3.1: Definition of register 2410. Measurement value of PMC6.

- (1) Value is always in the physical unit defined in register 2410.
- (2) For definition of the status see chapter 2.5.4. All bits set to zero means: no problem.

Command: PMC6 read		Modbus	Modbus address: 2410		pe: 3 Read
Parameter:	Unit	Value	Status	Min limit	Max limit
Format:	Hex	Float	Hex	Float	Float
Value:	0x04	24.35834	0x00	-20	130

Figure 2.5.3.3.2: Example to read register 2410. Physical unit is set to °C (0x04), PMC6 is 24.35834 °C, Status is 0x00, Min allowed value is -20 °C, Max allowed value is 130 °C.

For definition of the measurement status see chapter 2.5.4.

Attention:

You cannot read selectively the registers 3 and 4 for the measurement value only. You have to read the entire length of the command (10 registers) and extract the desired information.

2.5.3.4 Input of an Externally Measured Temperature

Unlike to the VisiFerm DO, this feature is not available for EDO Arc Sensors.

2.5.4 Definition of the Measurement Status for PMC1 / PMC6

This is the definition of the status registers read in registers 2090 (PMC1) and 2410 (PMC6):

Bit #	Hex code	Description
0 (LSB)	0x01	Temperature out of measurement range (see chapter 2.8.1)
1	0x02	Temperature out of operating range (see chapter 2.8.1)
2	0x04	Calibration status not zero (see chapter 2.7.4)
3	0x08	Warning not zero (see chapter 2.8.3)
4	0x10	Error not zero (see chapter 2.8.4)

Figure 2.5.4.1: Definition of measurement status for Primary Measurement Channels.

624388/04 page 33 / 86

2.5.5 Secondary Measurement Channels 1-16

EDO Arc Sensors do allow access to secondary measurement values (16 in total). The access to the individual SMC depends on the operator level. The available SMC are defined in register 2048 according to the selected operator level and the sensor type (see chapter 2.5.1).

2.5.5.1 Description of SMC

The registers defined here give a plain text ASCII description of each available SMC.

Start	Number of	Reg1 to Reg8	Modbus	Read	Write
register	registers	16 ASCII characters	function code	access	access
Address	8	Description of each SMC	3, 4	U/A/S	none

Figure 2.5.5.1.1: Definition of registers at Address

Description	Address	Plain Text (16 ASCII)	Description
SMC1	2464	R cathode	Resistance of the cathode
SMC3	2528	I cathode	Current of the cathode
SMC5	2592	E ref vs. anode	Polarization potential between cathode and anode
SMC8	2688	DO act	Current DO value (3-seconds-reading)
SMC9	2720	T act	Current T value (3-seconds-reading)

Figure 2.5.5.1.2: Full list of starting register addresses for the plain text ASCII description of each SMC

Example:

Command: SMC 1 text		Modbus address:	Modbus address: 2464		Type: 3	Read
Parameter:	Text					
Format:	Character					
Value:	R cathode					

Figure 2.5.5.1.3: Example to read the description of SMC1 at address 2464. It is "R cathode".

624388/04 page 34 / 86

2.5.5.2 Reading the measurement value of SMC

The registers defined here are used to read the measurement values of each SMC.

Start reg.	Num- ber of reg.	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus function code	Read access	Write access
Address	6	Physical unit	Measurement value of SMC	Standard deviation	3, 4	U/A/S	none

Figure 2.5.5.2.1: Definition of register at Address. Measurement value of each SMC.

Description	Address	Text	Unit	Min value	Max value
SMC1	2472	R cathode	kOhm	3	1000
SMC3	2536	I cathode	nA	0	1250
SMC5	2600	E ref vs. anode	mV	-900	900
SMC8	2696	DO act	mbar	0	1013
SMC9	2728	T act	K	253.15	403.15

Figure 2.5.5.2.2: Full list of register addresses for the measurement values of SMC1 to SMC9

Example:

Command: SMC1 read		Modbus	Modbus address: 2472		Type: 3	Read
Parameter:	Unit	Value	Standard dev.			
Format:	Hex	Float	Float			
Value:	0x4000	133.695	0.02			

Figure 2.5.5.2.3: Example to read register 2472. Physical unit is kOhm (0x4000), the measurement value of SMC1 is 133.695 kOhm, standard deviation of SMC1 is 0.02 kOhm

2.6 Configuration of the Measurement

This chapter describes the configuration of PMC1 and PMC6 by means of measurement parameters (PA).

2.6.1 Available Parameters

In register 3072, all available parameters (PA) are given.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
3072	2	Available parameters (see Figure 2.6.1.2)	3, 4	U/A/S	none

Figure 2.6.1.1: Definition of register 3072.

Bit #	Hex value	Description	Definition in EDO Arc Sensors
0 (LSB)	0x0001	PA1	Salinity
1	0x0002	PA2	Atmospheric pressure
2	0x0004	PA3	not available
3	0x0008	PA4	Current offset
			not available
7	0x0080	PA8	not available
8	0x0100	PA9	Moving average
9	0x0200	PA10	not available
10	0x0400	PA11	not available
11	0x0800	PA12	Moving average R
			not available
15 (MSB)	0x8000	PA16	not available

Figure 2.6.1.2: Bitwise definition of parameters PA1 to PA16, valid for EDO Arc Sensors

Command: Available parameters		Modbus address:	3072	Length: 2	Type: 3	Read
Parameter:	Measurement					
	parameters					
Format:	Hex					
Value:	0x090B					

Figure 2.6.1.3: Example to read the available parameters. The value 0x0903 corresponds to 0x0001 (PA1) + 0x0002 (PA2) + 0x0008 (PA4) + 0x0100 (PA9) + 0x0800 (PA12). Parameter 1, 2, 9 and 12 are available.

General note:

- PA1 to PA8 use FLOAT as data format for its values
- PA9 to PA16 use UNSIGNED INT as data format for its values.

HAMILT®N

624388/04 page 36 / 86

2.6.2 PA1: Salinity

The physical measurement of EDO Arc sensors is responding to the partial pressure of oxygen. For a given partial pressure of oxygen in air, the concentration of dissolved oxygen in saturated water is strongly dependent on temperature, as well as on its salinity. By measuring the partial pressure of oxygen and correcting for temperature and salinity, EDO Arc sensors can determine the concentration of oxygen in a sample.

At 25°C and in air saturated, pure water, the concentration of dissolved oxygen is 8.2 mg/l. The more salt, the lower is the solubility.

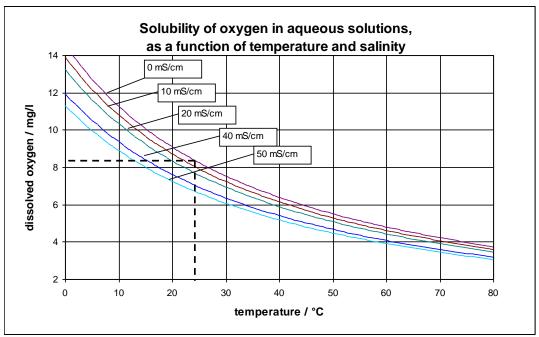


Figure 2.6.2.1: Solubility of oxygen as a function of temperature and salinity, in air saturated aqueous solution. Temperature range is from 0-85 °C. Salinity can be entered from 0-50 mS/cm.

2.6.2.1 Description of PA1 (Salinity)

In register 3104, a plain text ASCII description of PA1 is given.

	Start	Number of	Reg1 to Reg8	Modbus	Read	Write
3104 8 Description of PA1 3. 4 U/A/S none	register	registers	16 ASCII characters	function code	access	access
	3104	8	Description of PA1	3, 4	U/A/S	none

Figure 2.6.2.1.1: Definition of register 3104.

Command: Salinity text		Modbus address:	Modbus address: 3104		Туре: 3	Read
Parameter:	Text					
Format:	Character					
Value:	Salinity					

Figure 2.6.2.1.2: Example to read the description as an ASCII string. It is "Salinity".

624388/04 page 37 / 86

2.6.2.2 Selecting the Physical Unit and Writing the Value for PA1

In register 3112, the available physical units for PA1 are defined.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
3112	2	Available physical units for PA1	3, 4	U/A/S	none

Figure 2.6.2.2.1: Definition of register 3112.

Command: Salinity available units		Modbus address:	3112	Length: 2	Type: 3	Read
Parameter:	Units					
Format:	Hex					
Value:	0x400					

Figure 2.6.2.2.2: Example to read the available physical units for PA1. The only one available here is mS/cm (0x400). For the definition of the physical units see chapter 2.5.1.

By writing to register 3114, the active physical unit for PA1 can be selected, by choosing one of the physical units that are defined in register 3112. The value of the parameter can be set as well.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers	(bitwise defined)		function code	access	access
3114	4	Select physical unit	Value for PA1	16	none	S
		for PA1	(0-50mS/cm)			

Figure 2.6.2.2.3: Definition of register 3114. Only one bit for the physical unit can be set.

Command: Salinity		Modbus address: 3114		Length: 4	Type: 16	Write
Parameter:	Unit	Value				
Format:	Hex	Float				
Value:	0x400	10				

Figure 2.6.2.2.4: Example to set the physical unit of PA1 to mS/cm (0x400) and the value to 10 (mS/cm).

2.6.2.3 Reading all Values for PA1

By reading register 3114, the active physical unit, the selected value, and the min and max allowed values can be read.

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Modbus function code	Read access	Write access
3114	8	Physical unit	Current value	Min value	Max value	3, 4	U/A/S	none

Figure 2.6.2.3.1: Definition of register 3114.

624388/04

Command: S	alinity	Modbus address:	3114 Le	ngth: 8	Type: 3	Read
Parameter:	Unit	Value	Min value		Max value	
Format:	Hex	Float	Float		Float	
Value:	0x400	10	0		50	

Figure 2.6.2.3.2: Example to read PA1. The unit is mS/cm (0x400), the value is currently set to 10 (mS/cm); the min is 0 (mS/cm) and the max is 50 (mS/cm).

page 38 / 86

2.6.3 PA2: Air Pressure

EDO Arc sensors measure the partial pressure of oxygen. The partial pressure of oxygen is proportional to the atmospheric pressure or the pressure of the air supply to the process. In order to compensate for changes in atmospheric pressure or pressure of air supply in the process, one can use parameter PA2.

PA2 defines the current air pressure and this value is used for internal calculation.

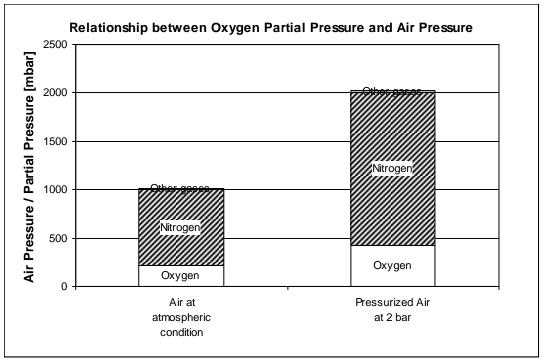


Figure 2.6.3.1: Influence of air pressure on the partial pressure of oxygen. Doubling the air pressure also doubles the oxygen partial pressure.

2.6.3.1 Description of PA2 (Air Pressure)

In register 3136, a plain text ASCII description of PA2 is given.

Start	Number of	Reg1 to Reg8	Modbus	Read	Write
register	registers	16 ASCII characters	function code	access	access
3136	8	Description of PA2	3, 4	U/A/S	none

Figure 2.6.3.1.1: Definition of register 3136.

Command: Pressure text		Modbus address:	3136	Length: 8	Type: 3	Read
Parameter:	Text					
Format:	Character					
Value:	Air Pressure					

Figure 2.6.3.1.2: Example to read the description. It is "Air Pressure".

624388/04 page 39 / 86

2.6.3.2 Selecting the Physical Unit and Writing the Value for PA2

In register 3144, the available physical units for PA2 are defined.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
3144	2	Available physical units for PA2	3, 4	U/A/S	none

Figure 2.6.3.2.1: Definition of register 3144.

Command: Pressure available units		Modbus address:	3144	Length: 2	Type: 3	Read
Parameter:	Units					
Format:	Hex					
Value:	0x800000					

Figure 2.6.3.2.2: Example to read the available physical units for PA2. The only one available here is mbar (0x800000). For the definition of the physical units see chapter 2.5.1.

By writing to register 3146, the active physical unit for parameter 2 can be selected, by choosing one of the physical units that are defined in register 3144. The value of the parameter can be set as well.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers	(bitwise defined)		function code	access	access
3146	4	Select physical unit	Value for PA2	16	none	S
		for PA2	(10-12000 mbar)			

Figure 2.6.3.2.3: Definition of register 3146. Only one bit for the physical unit can be set.

Command: P	ressure	Modbus address: 3146		Length: 4	Type: 16	Write
Parameter:	Unit	Value				
Format:	Hex	Float				
Value:	0x800000	1013				

Figure 2.6.3.2.4: Example to set the physical unit of PA2 to mbar (0x800000) and the value to 1013 (mbar).

2.6.3.3 Reading all Values for PA2

By reading register 3146, the active physical unit, the selected value, and the min and max allowed values can be read.

Start registe	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Modbus function code	Read access	Write access
3146	8	Physical unit	Current value	Min value	Max value	3, 4	U/A/S	none

Figure 2.6.3.3.1: Definition of register 3146.

624388/04

Command: P	ressure	Modbus address:	3146	Length: 8	Type: 3	Read
Parameter:	Unit	Value	Min va	lue	Max value	
Format:	Hex	Float	Float		Float	
Value:	0x800000	1013	10		12000	•

Figure 2.6.3.3.2: Example to read PA2. The unit is mbar (0x800000), the value is 1013 (mbar), the min is 10 (mbar) and the max is 12000 (mbar).

page 40 / 86

2.6.4 PA4: Current Offset (I offset)

The current value of the EDO sensors can be adjusted within the range of ±5nA. This current offset is added to the actual current value and therefore influences the oxygen value. The calibrated values are not influenced by the current offset. This means, if a positive current offset is set, the oxygen value becomes higher; if a negative offset current is set, the oxygen value becomes lower.

If a calibration has been performed after setting the current offset to a value, the parameter current offset will be reset automatically to the value of 0. This is valid for all calibrations: CP1 (zero oxygen), CP2 (air) and CP6 (product calibration). If the current offset is necessary for the process, PA4 must be set every time after a successful calibration.

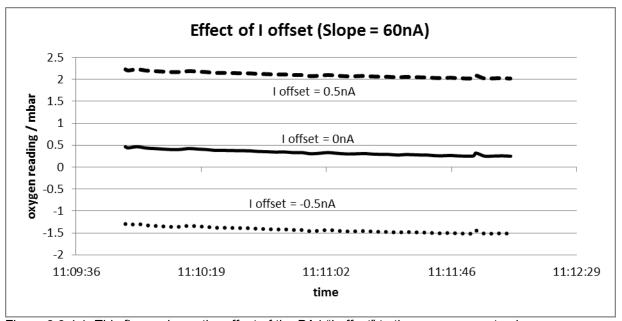


Figure 2.6.4.1: This figure shows the effect of the PA4 "I offset" to the measurement value.

2.6.4.1 Description of PA4 (Current Offset)

In register 3200, a plain text ASCII description of PA4 is given.

Start	Number of	Reg1 to Reg8	Modbus	Read	Write
register	registers	16 ASCII characters	function code	access	access
3200	8	Description of PA4	3, 4	U/A/S	none

Figure 2.6.4.1.1: Definition of register 3200.

Command: C	Current Offset text	Modbus address: 3	200	Length: 8	Type: 3	Read
Parameter:	Text					
Format:	Character					
Value:	I Offset					

Figure 2.6.4.1.2: Example to read the description. It is "I Offset".

2.6.4.2 Selecting the Physical Unit and Writing the Value for PA4

In register 3208, the available physical units for PA4 are defined.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
3208	2	Available physical units for PA4	3, 4	U/A/S	none

Figure 2.6.4.2.1: Definition of register 3208.

Command: Current Offset units		Modbus address:	3208	Length: 2	Type: 3	Read
Parameter:	Units					
Format:	Hex					
Value:	0x00020000					

Figure 2.6.4.2.2: Example to read the available physical units for PA4. The only one available here is "nA" (0x00020000). For the definition of the physical units see chapter 2.5.1.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers	(bitwise defined)		function code	access	access
3210	4	Select physical unit	Value for PA4	16	none	S
		for PA4	(-5 to +5, default: 0)			

Figure 2.6.4.2.3: Definition of register 3210. Only one bit for the physical unit can be set. PA4 can be set to the values from -5 to +5.

By writing to register 3210, the active physical unit for PA4 can be selected, by choosing one of the physical units that are defined in register 3208. The value of the parameter can be set as well.

Command: C	Current Offset	Modbus address: 3210		Length: 4	Type: 16	Write
Parameter:	Unit	Value				
Format:	Hex	Float				
Value:	0x00020000	0				

Figure 2.6.4.2.4: Example to set the physical unit of PA4 to "nA" (0x00020000) and the value of the Current Offset to 0.

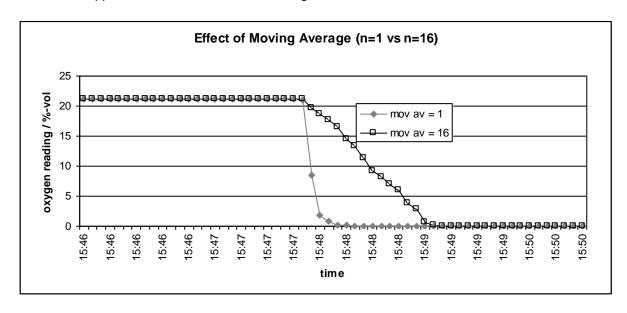
2.6.4.3 Reading all Values for PA4

By reading register 3210, the active physical unit of measurement, the selected value, and the min and max values can be read.

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Modbus function code	Read access	Write access
3210	8	Physical unit	Current value	Min value	Max value	3, 4	U/A/S	none

Figure 2.6.4.3.1: Definition of register 3210.

Command: Current Offset		Modbus address: 3210		Length: 8	Type: 3	Read
Parameter:	Unit	Value	Min valu	е	Max value	
Format:	Hex	Float	Float		Float	
Value:	0x00020000	0	-5		+5	


Figure 2.6.4.3.2: Example to read PA4. The physical unit is 0x00020000 ("nA"), the value is 0, and the limits are -5 to +5.

HAMILT®N

2.6.5 PA9: Moving Average

The EDO Arc Sensor provides new DO readings every 3 seconds. One has the possibility to smoothen the DO reading (PMC1) by means of a moving average applied to the 3-seconds-readings.

PA9 can be applied on 1 to 16 3-seconds-readings. The default value is 2.

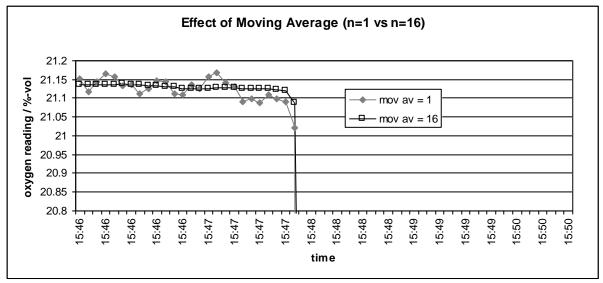


Figure 2.6.5.1: Comparison of the response of a EDO Arc Sensor to a change from air to zero oxygen, using no moving average (n=1) or a moving average over 16 3-seconds-readings.

Using moving average, the short term signal stability can be improved; on the other hand, the response time of the sensor increases with increasing moving average. A moving average over 16 samples results in a response time of at least 48 s.

Note:

PA9 is applied to both PMC1 and PMC6.

HAMILT®N

624388/04

2.6.5.1 Description of PA9 (Moving Average)

In register 3360, a plain text ASCII description of PA9 is given.

Start	Number of	Reg1 to Reg8	Modbus	Read	Write
register	registers	16 ASCII characters	function code	access	access
3360	8	Description of PA9	3, 4	U/A/S	none

Figure 2.6.5.1.1: Definition of register 3360.

Command: Moving average text		Modbus address: 3	360	Length: 8	Type: 3	Read
Parameter:	Text					
Format:	Character					
Value:	Moving average					

Figure 2.6.5.1.2: Example to read the description for "Moving average".

2.6.5.2 Selecting the Physical Unit and Writing the Value for PA9

In register 3368, the available physical units for PA9 are defined.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
3368	2	Available physical units for PA9	3, 4	U/A/S	none

Figure 2.6.5.2.1: Definition of register 3368.

Command: Moving average av. units		Modbus address:	3368	Length: 2	Type: 3	Read
Parameter:	Units					
Format:	Hex					
Value:	0x01					

Figure 2.6.5.2.2: Example to read the available physical units for PA9. The only one available here is "none" (0x01). For the definition of the physical units see chapter 2.5.1.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers	(bitwise defined)		function code	access	access
3370	4	Select physical unit	Value for PA9	16	none	S
		for PA9	(1-16, default: 2)			

Figure 2.6.5.2.3: Definition of register 3370. Only one bit for the physical unit can be set. PA9 can be set to the value 1-16. A value of 1 does not influence the response time of the sensor, a value of 16 increases the response time of the sensor to 48 s.

By writing to register 3370 the active physical unit for PA9 can be selected by choosing one of the physical units that are defined in register 3368. The value of the parameter can be set as well.

Command: Moving average		Modbus address: 3370		Length: 4	Type: 16	Write
Parameter:	Unit	Value				
Format:	Hex	Decimal				
Value:	0x01	12				·

Figure 2.6.5.2.4: Example to set the physical unit of PA9 to "none" (0x01) and the value of the moving average to 12.

624388/04 page 44 / 86

2.6.5.3 Reading all Values for PA9

By reading register 3370, the active physical unit of measurement, the selected value, and the min and max values can be read.

Start	Number of	Reg1 /	Reg3 /	Reg5 /	Reg7 /	Modbus	Read	Write
register	registers	Reg2	Reg4	Reg6	Reg8	function	access	access
						code		
3370	8	Physical	Current	Min	Max	3, 4	U/A/S	none
		unit	value	value	value			

Figure 2.6.5.3.1: Definition of register 3370.

Command: Moving average		Modbus address: 3370		Length: 8	Type: 3	Read
Parameter:	Unit	Value	Min va	lue	Max value	
Format:	Hex	Decimal	Decima	al	Decimal	
Value:	0x01	10	1		16	

Figure 2.6.5.3.2: Example to read PA9. The physical unit is 0x01 ("none"), the value is 10 and the limit is 1 to 16.

624388/04 page 45 / 86

2.6.6 PA12: Moving Average R

EDO Arc Sensors allow to have a separate moving average on secondary measurement values:

Cathode resistance

The moving average can be applied on 1 to 16 3-s measurement values. The default value is 4. Especially if high resistances are measured, it is recommended to choose a higher moving average.

2.6.6.1 Description of PA12 (Moving Average R)

In register 3456, a plain text ASCII description of PA12 is given.

Start	Number of	Reg1 to Reg8	Modbus	Read	Write
register	registers	16 ASCII characters	function code	access	access
3456	8	Description of PA12	3, 4	U/A/S	none

Figure 2.6.6.1.1: Definition of register 3456.

Command: Moving average text		Modbus address:	Modbus address: 3456		Type: 3	Read
Parameter:	Text					
Format:	Character					
Value:	Moving average R					

Figure 2.6.6.1.2: Example to read the description for "Moving average R".

2.6.6.2 Selecting the Physical Unit and Writing the Value for PA12

In register 3464, the available physical units for PA12 are defined.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
3464	2	Available physical units for PA12	3, 4	U/A/S	none

Figure 2.6.6.2.1: Definition of register 3368.

Command: Moving average av. units		Modbus address:	Modbus address: 3464		Type: 3	Read
Parameter:	Units					
Format:	Hex					
Value:	0x01					

Figure 2.6.6.2.2: Example to read the available physical units for PA12. The only one available here is "none" (0x01). For the definition of the physical units see chapter 2.5.1.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers	(bitwise defined)		function code	access	access
3466	4	Select physical unit	Value for PA12	16	none	S
		for PA12	(1-16, default: 4)			

Figure 2.6.6.2.3: Definition of register 3466. Only one bit for the physical unit can be set. PA12 can be set to the values 1-16.

624388/04 page 46 / 86 **HAMILT®N**

By writing to register 3466, the active physical unit for PA12 can be selected, by choosing one of the physical units that are defined in register 3464. The value of the parameter can be set as well.

Command: Moving average		Modbus address: 3466		Length: 4	Type: 16	Write
Parameter:	Unit	Value				
Format:	Hex	Decimal				
Value:	0x01	7				

Figure 2.6.6.2.4: Example to set the physical unit of PA12 to "none" (0x01) and the value of the moving average R to 7.

2.6.6.3 Reading all Values for PA12

By reading register 3466, the active physical unit of measurement, the selected value, and the min and max values can be read.

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Modbus function code	Read access	Write access
3466	8	Physical unit	Current value	Min value	Max value	3, 4	U/A/S	none

Figure 2.6.6.3.1: Definition of register 3466.

Command: Moving average		Modbus address:	3466 Length: 8	Type: 3 Rea	d
Parameter:	Unit	Value	Min value	Max value	
Format:	Hex	Decimal	Decimal	Decimal	
Value:	0x01	7	1	16	

Figure 2.6.6.3.2: Example to read PA12. The physical unit is 0x01 ("none"), the value is 7, and the limits are 1 to 16.

2.7 Calibration

2.7.1 Available Calibration Points

In register 5120, the available number of Calibration Points (CP) for Primary Measurement Channel 1 (PMC1) is defined. 8 individual CP are theoretically possible.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(bitwise defined)	function code	access	access
5120	2	Available number of CP for PMC1	3, 4	U/A/S	none
		(see Figure 2.7.1.2)			

Figure 2.7.1.1: Definition of register 5120.

Bit #	Hex value	Description	Definition in Arc Sensors
0 (LSB)	0x01	CP1	Calibration Point 1
1	0x02	CP2	Calibration Point 2
2	0x04	CP3	not available
			not available
5	0x20	CP6	Product Calibration
6	0x40	CP7	not available
7 (MSB)	0x80	CP8	not available

Figure 2.7.1.2: Bitwise definition of CP1 to CP8.

Command: Available cali points		Modbus address:	Modbus address: 5120		Type: 3	Read
Parameter:	Points					
Format:	Hex					
Value:	0x23					

Figure 2.7.1.3: Example to read the available CPs. 0x23 = 0x01 (CP1) + 0x02 (CP2) + 0x20 (CP6).

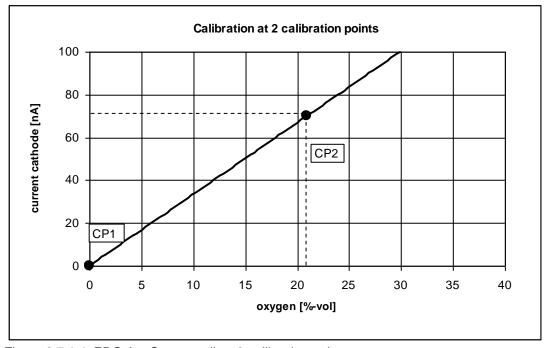


Figure 2.7.1.4: EDO Arc Sensors allow 3 calibration points:

624388/04

CP1 and CP2 are used for standard calibration (shown in this figure).

The product calibration CP6 is used to adjust the standard calibration function to specific process conditions (the effect of CP6 is shown in Figure 2.7.3.2.1).

page 48 / 86

2.7.2 Definitions of Calibration Points

2.7.2.1 Calibration Points 1 and 2 (Standard Calibration)

The limits for the calibration point 1 are defined in register 5152, for calibration point 2 in register 5184.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus	Read	Write
register	registers				function code	access	access
5152	6	Physical unit currently active for CP1	Min value for CP1 (in the physical unit as defined in	Max value for CP1 (in the physical unit as defined in	3, 4	U/A/S	none
5184	6	Physical unit currently active for CP2	Reg1 and 2) Min value for CP2 (in the physical unit as defined in Reg1 and 2)	Reg1 and 2) Max value for CP2 (in the physical unit as defined in Reg1 and 2)	3, 4	U/A/S	none

Figure 2.7.2.1.1: Definition of register 5152 for CP1 and 5184 for CP2.

Command: Calibration limits CP1		Modbus address:	5152	Length: 6	Type: 3	Read
Parameter:	Unit	Min value	Max v	alue		
Format:	Hex	Float	Float			
Value:	0x10	0	0			

Figure 2.7.2.1.2: Example to read the limits of CP1. Currently active physical unit is %-vol (0x10). The min and max values are both 0.

Command: Calibration limits CP2		Modbus address: 5184		Length: 6	Type: 3	Read
Parameter:	Unit	Min value	Max v	alue		
Format:	Hex	Float	Float			
Value:	0x10	0	0			

Figure 2.7.2.1.3: Example to read the limits of CP2. The active physical unit is %-vol (0x10). The min and max values are both 0, indicating, that calibration at CP2 can be performed only using defined calibration standards having discrete oxygen values.

When initiating the calibration at CP1 and CP2, the measured oxygen and temperature have to be stable for at least 3 minutes. The stability criteria are defined in register 5128:

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Modbus	Read	Write
register	registers	(Float)	(Float)	function code	access	access
5128	4	Max. Drift PMC1	Max. Drift PMC6	3, 4, 16	U/A/S	S
		oxygen	Temperature			
		[nA/min]	[K/min]			

Figure 2.7.2.1.4: Definition of register 5128.

624388/04 page 49 / 86

Command: R	ead calibration stability	Modbus address:	5128	Length: 4	Type: 3	Read
Parameter:	Max drift oxygen	Max drift Temp				
	[nA/min]	[K/min]				
Format:	Float	Float				
Value:	0.5	0.5				

Figure 2.7.2.1.5: Example to read the calibration stability.

Command: Set calibration stability		Modbus address:	5128	Length: 4	Type: 16	Write
Parameter:	Max drift oxygen	Max drift Temp				
	[nA/min]	[K/min]				
Format:	Float	Float				
Value:	0.5	0.5				

Figure 2.7.2.1.6: Example to set the calibration stability.

Attention:

The stability criteria defined in register 5128 is valid for CP1 and CP2 only, but NOT for CP6.

2.7.2.2 Calibration Point 6 (Product Calibration)

The limits for calibration point 6 are given in register 5312.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus	Read	Write
register	registers				function code	access	access
5312	6	Physical unit currently active for CP6	Min value for CP6 (in the physical unit as defined in Reg1 and 2)	Max value for CP6 (in the physical unit as defined in Reg1 and 2)	3, 4	U/A/S	none

Figure 2.7.2.2.1: Definition of register 5312 for CP6.

Command: Calibration limits CP6 Modbus address: 5		5312	Length: 6	Type: 3	Read	
Parameter:	Unit	Min value	Max v	alue alue		
Format:	Hex	Float	Float			
Value:	0x10	2	50.5			

Figure 2.7.2.2: Example to read the limits of CP6. The active physical unit is %-vol, the min value is 2 %-vol and the max value is 50.5 %-vol (between 20 and 550 mbar, respectively). When changing the active physical unit for PMC1 (using register 2090), the min and max value will be updated automatically to the new physical unit. Temperature, atmospheric pressure and salinity are compensated.

Note: the definition of min and max is different than the one for CP1 / CP2, because CP6 can be set to any oxygen value.

HAMILT®N

624388/04 page 50 / 86

2.7.3 Calibration Procedure

2.7.3.1 Calibration at CP1 and CP2 (Standard Calibration)

The Arc Sensor family has a unique calibration routine. When initiating the calibration, the data set of the sensor is automatically traced back within the last 3 minutes and a decision is made immediately if the calibration is successful or not. The operator therefore gets an immediate result. The criteria for a successful calibration are:

- the stability of oxygen value and temperature over the last 3 minutes (see register 5128)
- the currently measured oxygen value fits to one of the calibration standards defined in the selected set of calibration standards
- the limits of compensated slope and offset at zero oxygen have to be met

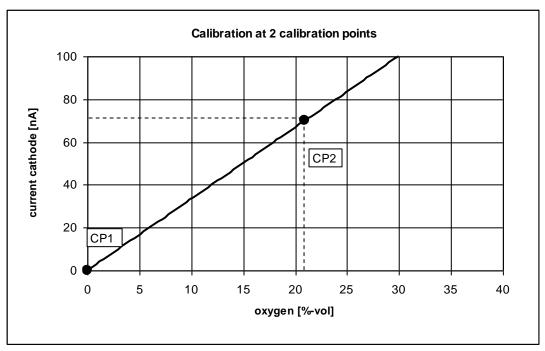


Figure 2.7.3.1.1: Standard Calibration using CP1 and CP2.

CP1 and CP2 define a linear relationship between the electrical current and the oxygen value. This linear calibration function is defined by an offset at zero oxygen [nA] and a slope [nA]. This slope is compensated to air saturated water at 25°C, 1013mbar and 0mS/cm. These two values are stored in register 5448.

Notes:

- In order to perform a standard calibration at CP1 and CP2, it is necessary to use calibration standards. The operator is restricted to use those standards that are defined in the six sets of calibration standards (see chapter 2.7.11).
- There are two ways of performing a standard calibration:
 - standard calibration with automatic recognition of the calibration standard:
 in this case, the sensor decides on itself in what calibration standard it is immersed.
 The criteria to decide on is the electrical current measured. The sensor checks the list of calibration standards that are available for automatic recognition (see chapter 2.7.11)
 - standard calibration with **manual selection** of the calibration standard: the operator is selecting the calibration standard in which the sensor is immersed.
- Factory calibration is zero oxygen at CP1 and air saturated water at 25°C, 1013mbar and 0mS/cm at CP2.

HAMILT®N

Standard Calibration with Automatic Recognition of the Standard

Prior to calibration, the specialist selects - for each set of calibration standards - a list of calibration standards allowed for automatic recognition (register 9530).

When the calibration is initiated, the sensor screens this list of allowed calibration standards and checks if the currently measured oxygen value is within the allowed range of oxygen values, defined for the individual calibration standards in this list.

If the sensor does find a corresponding calibration standard, the nominal oxygen value of the specific calibration standard is assigned to the currently measured electrical current. The temperature dependency of the calibration standard is considered during the assignment.

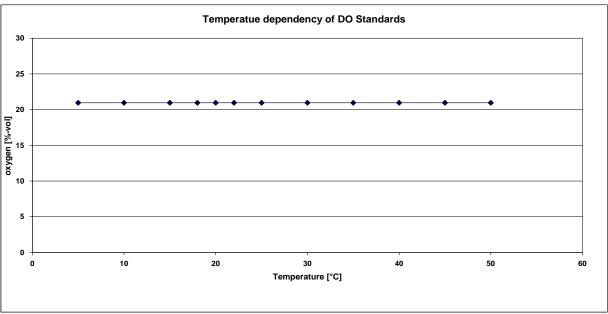


Figure 2.7.3.1.2: Temperature dependency of the oxygen value of DO Standards calibration standards.

If the sensor does not find any corresponding calibration standard, the bit representing the corresponding status "no matching calibration standard" is set in the calibration status register.

Note that only the nominal value of the calibration standard is used for calibration. The actual value of the calibration solution, which may deviate from the nominal value, is not taken into account and cannot be set by the operator.

Standard Calibration with Manual Selection of the Calibration Standard

If the operator knows in what calibration standard the sensor is immersed, he can initiate the calibration procedure by means of setting the oxygen value to the actual value of the calibration standard. The sensor now screens the list of calibration standards that are allowed for manual selection (register 9530). If the oxygen value entered by the operator fits in the allowed range of one of the allowed calibration standards, the entered oxygen value is assigned to the currently measured electrical current. The temperature dependency of the calibration standard is considered during the assignment.

If the sensor does not find any corresponding calibration standard, the bit representing the corresponding status "no matching calibration standard" is set in the calibration status register.

Note: using manual selection only, the actual oxygen value of the calibration standard can be set. However, the actual value must be within the given tolerance of the standard in use.

624388/04 page 52 / 86

Perform the following steps to do a standard calibration at CP1 and CP2:

Step1: Select the desired set of calibration standards (see chapter 2.7.11)

Step 2: Immerse the sensor into one of the calibration standards available in the selected set

Attention:

It is important that the EDO Arc Sensor is immersed in a defined calibration standard at least 3 minutes BEFORE the calibration is started.

Step 3: Choose one of the calibration points CP1 or CP2.

Attention:

The assignment of both CP1 and CP2 to the same oxygen value is rejected.

Step 4: Start the calibration (automatic recognition or manual selection)

The calibration is initiated at CP1 by writing to register 5162 or at CP2 by writing to register 5194.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
5162	2	oxygen value at CP1 (physical unit as defined with register 2090)	16	none	A/S
5194	2	oxygen value at CP2 (physical unit as defined with register 2090)	16	none	A/S

Figure 2.7.3.1.3: Definition of register 5162 and 5194. You have two options to enter the oxygen value:

Automatic recognition: oxygen value=0: the sensor tries to assign the measured electrical current to one of the calibration standards available for automatic calibration.

Manual selection: enter the actual oxygen value at 25°C (the value must be within the tolerance range of the nominal value of one of the calibration standards available for manual selection)

Step 5: Read the calibration status (see chapter 2.7.4)

Step 6: Check the EDO Arc Sensor's quality indicator

624388/04

Examples: (Definitions of register 5158 and 5190 used in these examples are given in chapter 2.7.4.1, those for register 4872 in chapter 2.8.6)

Example to calibrate at CP1 with automatic recognition:

Command: N	lake calibration CP1	Modbus address: 5162	Length: 2	Type: 16	Write
Parameter:	DO value				
Format:	Float				
Value:	0				

Figure 2.7.3.1.4: Example to start the calibration at CP1, setting a value of 0 for automatic recognition of the calibration standard.

Example to calibrate at CP2 with automatic recognition:

Command: M	Take calibration CP2	Modbus address:	5194	Length: 2	Type: 16	Write
Parameter:	DO value					
Format:	Float					
Value:	0					

Figure 2.7.3.1.5: Example to start the calibration at CP2, setting a value of 0 for automatic recognition of the calibration standard.

Example to read the calibration status of CP1:

Command: C	Calibration status CP1	Modbus address:	5158	Length: 6	Type: 3	Read
Parameter:	Status	Unit	Value			
Format:	Hex	Hex	Float			
Value:	0x00000000	0x00000010	0			

Figure 2.7.3.1.6: Example to read the calibration status of CP1 after calibration CP1 at 0 = auto. All bits of CP1 are zero (0x000000000), indicating that the calibration was successful. The physical unit of the last calibration is %-vol (0x00000010) and the assigned DO value is 0 at 25°C.

Example to read the calibration status of CP2:

Command: C	Calibration status CP2	2 Modbus address:	5190	Length: 6	Type: 3	Read
Parameter:	Status	Unit	Value			
Format:	Hex	Hex	Float			
Value:	0x00000000	0x00000010	20.95			

Figure 2.7.3.1.7: Example to read the calibration status of CP2 after calibrating CP2 at 0 = auto. All bits of CP2 are zero (0x00000000), indicating that the calibration was successful. The physical unit of the last calibration is %-vol (0x00000010) and the DO value is 20.95.

Example to read the sensor's quality indicator:

Command: C	Quality indicator	Modbus address:	4872	Length: 2	Type: 3	Read
Parameter:	Quality [%]					
Format:	Float					
Value:	100					

Figure 2.7.3.1.8: Example to read the sensor's quality indicator

624388/04 page 54 / 86

2.7.3.2 Calibration at CP6 (Product Calibration)

The product calibration is a process in order to adjust the measurement of a correctly calibrated EDO Arc Sensor to specific process conditions.

Product calibration is a two stage process:

- An initial measurement is performed while the operator takes a sample of the process solution.
 At that time point the EDO Arc Sensor stores its raw measurement value, temperature and operating hour in the memory.
 - While the operator takes the sample to the analytics lab for reference analysis the EDO Arc Sensor is still running on its prior standard calibration (CP1 and CP2) while the initial measurement data for the ongoing product calibration is kept in the sensor's memory.
- 2. When the result of the reference analysis is available this value is assigned, at a second time point, to the former initial measurement data stored in the EDO Arc Sensor.
 - The sensor is now, after valid assignment, running on a calibration function which is compensated for the correct process conditions. The product calibration (CP6) is now active.

Performing a Cancel command for the product calibration (CP6) brings the sensor back to its still stored standard calibration (CP1 and CP2).

If a product calibration is still active and a standard calibration (CP1 or CP2) is performed the product calibration (CP6) is cancelled.

If the operator needs to overrun an active product calibration (old CP6) by a new product calibration (new CP6) the above process applies in the same way. After initial measurement the EDO Arc Sensor is still running on the first product calibration (old CP6) until a valid assignment has been done (new CP6).

624388/04 page 55 / 86

What happens to the EDO Arc Sensor's calibration function upon product calibration (CP6)? A product calibration changes the compensated slope of the linear calibration function defined by the standard calibration at CP1 and CP2.

Product calibration EDO ARC Sensors

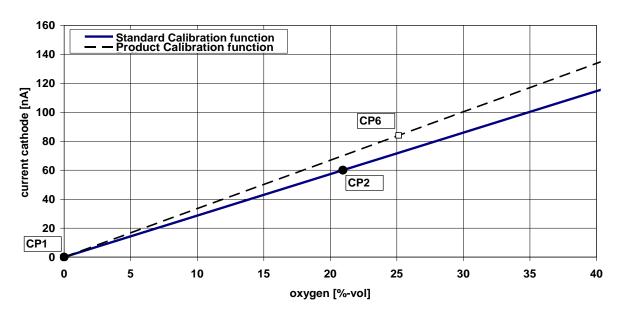


Figure 2.7.3.2.1: Effect of the product calibration CP6 on an existing standard calibration function defined by CP1 and CP2.

The operator starts with a Standard Calibration with calibration points CP1 and CP2:

CP1: DO value of calibration standard: 0 %-vol

electrical potential: 0 nA

CP2: DO value of calibration standard: 20.95 %-vol

electrical potential: 60 nA

The sensor internally calculates the calibration function, using the calibration points **CP1** and **CP2**. The resulting calibration function, compensated to air saturated water at 25°C, 1013mbar and 0mS/cm, is shown as a straight line. The calibration function is described by two parameters: the offset at zero oxygen and the slope.

Some weeks later, the operator believes that the Standard Calibration function is not correct anymore. As the process is running and he is not able to perform a standard calibration under defined conditions in the lab, he decides to perform a product calibration CP6, in other words adjusting the standard calibration function to the process conditions:

CP6: oxygen value of product: 25%-vol electrical current: 85 nA

The sensor internally changes the slope of the calibration curve. The zero point remains unchanged.

Another special feature of this calibration point is to switch off and back on again a product calibration. These functions are called "restore standard calibration" and "restore product calibration".

Note:

The sensor's internal criteria for a successful product calibration are:

- the sensor is currently in an environment corresponding to the EDO Arc Sensors measurement range.
- the oxygen content is within the calibration limits defined for CP6 (see above)
- the parameters for the product calibration defined by CP1 and CP6 are in the following range:
 - the current at zero oxygen remains the same (since it is defined by CP1)
 - the new compensated slope compared to the slope defined by prior calibration (e.g. CP1/CP2) is not lower than 10% or higher than 1000%.

The different functionalities of product calibration (CP6) are accessible through the following sensor commands:

- Initial measurement
- Assignment
- Cancel
- Restore standard calibration
- Restore product calibration

All commands are executed by writing a command value to the register 5340 except for assignment where the calibration value is written to register 5322 (see below).

Definition of the commands for product calibration

The commands for register 5340 are defined as follows:

Code Hex	Definition of commands
0x01	Perform initial measurement
0x02	Cancel an active product calibration
0x03	Restore a standard calibration from an active product calibration
0x04	Restore a product calibration from an active standard calibration

Figure 2.7.3.2.2: Definition of the commands related to the product calibration

St	tart	Number of	Reg1 / Reg2	Modbus	Read	Write
re	gister	registers		function code	access	access
53	340	2	Code as defined in Figure 2.7.3.2.2	3, 4, 16	A/S	A/S

Figure 2.7.3.2.3: Definition of register 5340

2.7.3.2.1 Product calibration: Initial measurement

Upon process sample collection for laboratory analysis the command for initial measurement is sent to the sensor.

This is achieved by writing the command 0x01 to register 5340 which performs the initial measurement and stores the corresponding measurement values in the sensor.

Command: C	P6: Initial measurement	Modbus address:	5340	Length: 2	Type: 16	Write
Parameter:	Command					
Format:	Hex					
Value:	0x01					

Figure 2.7.3.2.1.1: Example to start the product calibration procedure. Writing the command code 0x01 (initial measurement) to the CP6 command register 5340.

After successful initial measurement the corresponding calibration status (register 5318, Figure 2.7.4.2.1) is "CP6 initial measurement" (0x08000000) (see Figure 2.7.4.1.1).

The sensor continues measuring using the prior standard calibration.

2.7.3.2.2 Product calibration: Assignment

After successful initial measurement a correct value must be assigned to the initially stored measurement data.

This is achieved by writing the correct calibration value to register 5322.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
5322	2	Oxygen value in the correct unit	16	none	A/S
		(floating)			

Figure 2.7.3.2.2.1: Definition of register 5322

Command: CP6: Assignment		Modbus address:	5322	Length: 2	Type: 16	Write
Parameter:	Value					
Format:	Float					
Value:	30					

Figure 2.7.3.2.2: Example to assign a calibration value to the above performed initial measurement. This is achieved by writing the correct oxygen value in the correct unit (here 30 %-vol)

From now on the sensor is measuring using the here performed product calibration.

The calibration status (register 5318) is 0x14000000 meaning that a correct value has been assigned and that the product calibration is active (see Figure 2.7.4.1.1).

2.7.3.2.3 Product calibration: Cancel

To cancel an active product calibration or an active initial measurement the command 0x02 is written to register 5340.

Command: CP6: Cancel		Modbus address: 53	340	Length: 2	Type: 16	Write
Parameter:	Command					
Format:	Hex					
Value:	0x02					

Figure 2.7.3.2.3.1: Example to cancel an active product calibration or an initial measurement. Writing the command 0x02 (cancel) to register 5340.

Performing this action the product calibration or any initial measurements are canceled. The values of the prior product calibration are removed from the sensor's memory. From now on the sensor is measuring using its prior CP1 / CP2 standard calibration.

The sensor's calibration status (register 5318) will be reading 0x00 again (see Figure 2.7.4.1.1).

624388/04 page 58 / 86

2.7.3.2.4 Product calibration: Restore standard calibration

If a product calibration is active this product calibration can be temporarily switched off by writing the command 0x03 to register 5340.

Performing this action the values of the product calibration remain stored in the sensor's memory.

Command: CP6: Restore standard		Modbus address:	5340	Length: 2	Type: 16	Write
Parameter:	Command					
Format:	Hex					
Value:	0x03					

Figure 2.7.3.2.4.1: Example to restore a standard calibration from an active product calibration. Writing command 0x03 (restore standard calibration) to register 5340.

From now on the sensor is measuring using its prior CP1 / CP2 standard calibration.

The sensor's calibration status (register 5318) will be reading "CP6 assigned" (0x10000000) meaning that a valid assignment for a product calibration is available in the sensor's memory (see Figure 2.7.4.1.1).

2.7.3.2.5 Product calibration: Restore product calibration

If a valid but inactivated product calibration is available in the sensors memory, the calibration status is reading "CP6 assigned" (corresponding to 0x10000000, see Figure 2.7.4.1.1), this stored product calibration can be restored or reactivated by writing command 0x04 to register 5340.

Command: CP6: Restore product		Modbus address:	5340	Length: 2	Type: 16	Write
Parameter:	Command					
Format:	Hex					
Value:	0x04					

Figure 2.7.3.2.5.1: Example to restore an available product calibration from an active standard calibration. Writing command 0x04 (restore product calibration) to register 5340.

From now on the sensor is measuring using its prior CP6 product calibration. The sensors calibration status (register 5318) will be reading 0x14000000 (corresponding to "CP6 assigned" and "CP6 active", see Figure 2.7.4.1.1) again.

If this command is performed without available product calibration in the sensor's memory the sensor will respond with a Modbus exception since this command is not valid.

624388/04 page 59 / 86

2.7.4 Reading the Calibration Status

2.7.4.1 Reading the Calibration Status of CP1 and CP2

A standard calibration is not always successful. In order to analyze what has gone wrong, two different calibration status registers can be read:

- Register 5158 for CP1
- Register 5190 for CP2

Note

Registers 5158 and 5190 contain the same information!

Bit #	Hex value	Definition
0 (LSB)	0x00000001	not available
1	0x00000002	CP1: no matching calibration standard
2	0x00000004	CP1: actual temperature reading is too low
3	0x00000008	CP1: actual temperature reading is too high
4	0x0000010	CP1: temperature reading during calibration is not stable
5	0x00000020	CP1: current at zero oxygen is too low or slope is too low (see chapter 2.7.8)
6	0x00000040	CP1: current at zero oxygen is too high or slope is too high (see chapter 2.7.8)
7	0x00000080	CP1: oxygen reading during calibration is not stable
8	0x00000100	not available
9	0x00000200	CP2: no matching calibration standard
10	0x00000400	CP2: actual temperature reading is too low
11	0x00000800	CP2: actual temperature reading is too high
12	0x00001000	CP2: temperature reading during calibration is not stable
13	0x00002000	CP2: slope is too low (see chapter 2.7.8)
14	0x00004000	CP2: slope is too high (see chapter 2.7.8)
15	0x00008000	CP2: oxygen reading during calibration is not stable
		not available
24	0x01000000	CP6: out of calibration range
25	0x02000000	CP6: out of range
26	0x04000000	CP6: active
27	0x08000000	CP6: initial measurement
28	0x10000000	CP6: assigned
		not available
30	0x40000000	CP2: incorrect measurement unit
31	0x80000000	CP1: incorrect measurement unit

Figure 2.7.4.1.1: Definition of the status for register 5158, 5190 and 5318 (see Figure 2.7.4.1.2 and Figure 2.7.4.2.1).

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus	Read	Write
register	registers				function	access	access
					code		
5158	6	Status CP1 (see Figure 2.7.4.1.1)	Physical unit of the last successful calibration CP1	Oxygen value of the last successful calibration CP1	3, 4	U/A/S	none
5190	6	Status CP2 (see Figure 2.7.4.1.1)	Physical unit of the last successful calibration CP2	Oxygen value of the last successful calibration CP2	3, 4	U/A/S	none

Figure 2.7.4.1.2: Definition of register 5158 for CP1 and register 5190 for CP2.

HAMILT®N

624388/04 page 60 / 86

Command: Calibration status CP1		Modbus address:	Modbus address: 5158		Type: 3	Read
Parameter:	Status	Unit	Value			
Format:	Hex	Hex	Float			
Value:	0x00000080	0x00000010	0			

Figure 2.7.4.1.3: Example to read the calibration status of CP1 after calibration CP1 at 0 = auto. The status message is: "CP1 DO reading during calibration is not stable" (0x00000080). The physical unit of the last successful calibration is %-vol (0x00000010) and the last successful calibration has been performed at 0 %-vol.

Command: Calibration status CP2		Modbus address:	5190	Length: 6	Type: 3	Read
Parameter:	Status	Unit	Value			
Format:	Hex	Hex	Float			
Value:	0x00000080	0x00000010	20.95			

Figure 2.7.4.1.4: Example to read the calibration status of CP2 after calibrating CP2 at 0 = auto. All bits of CP2 are zero (0x0000**00**80), indicating that the calibration was successful. The physical unit of the last calibration is %-vol (0x00000010) and the last successful calibration has been performed at 20.95 %-vol.

<u>Please note</u> that the status says: "CP1 Oxygen reading during calibration is not stable". This is a status bit for CP1. All bits of CP1 will remain unaffected when calibrating CP2.

Command: Calibration status CP2		Modbus address: 5190		Length: 6	Type: 3	Read
Parameter:	Status	Unit	Value			
Format:	Hex	Hex	Float			
Value:	0x00000180	0x00000010	20.95			

Figure 2.7.4.1.5: Example to read the calibration status of CP2 after attempt to calibrate CP2 at 1 %-vol, which is out of the allowed limit (calibration standards). The value you see is 0x0180 = 0x080 + 0x0100. Shown is still 0x0080 of CP1 and new 0x0100 of CP2, which says: "CP2 oxygen value is too low for calibration" (see register 5184).

2.7.4.2 Reading the Calibration Status of CP6 (Product Calibration)

The calibration status and the current state of the product calibration process (CP6) is read in the calibration status register for CP6 (register 5318).

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus	Read	Write
register	registers				function	access	access
					code		
5318	6	Status CP6	Physical unit of	Oxygen value	3, 4	U/A/S	none
		(see Figure	the last	of the last			
		2.7.4.1.1)	successful	successful			
		•	calibration CP6	calibration CP6			

Figure 2.7.4.2.1: Definition of register 5318 for CP6. For examples, see following chapters.

2.7.4.2.1 Product calibration: Initial measurement

Calibration status after initial measurement command under conditions outside the valid calibration range for CP6 (defined in register 5312):

Command: Calibration status CP6		Modbus address: 5318		Length: 6	Type: 3	Read
Parameter:	Status	Unit	Value			
Format:	Hex	Hex	Float			
Value:	0x01000000	0x00000010	25			

Figure 2.7.4.2.1.1: Example to read the calibration status of CP6 after having performed an initial measurement at CP6 under measurement conditions outside the calibration range for CP6.

The status says: "CP6: out of calibration range" (0x01000000). The last successful calibration has been performed at 25 %-vol.

The initial measurement in this case was **not** successful.

The sensor is still running on its prior standard calibration.

Calibration status after successful initial measurement:

Command: C	Calibration status CP6	Modbus address:	5318	Length: 6	Type: 3	Read
Parameter:	Status	Unit	Value			
Format:	Hex	Hex	Float			
Value:	0x08000000	0x00000010	25			

Figure 2.7.4.2.1.2: Example to read the calibration status of CP6 after having performed an initial measurement at CP6 under correct measurement conditions.

The status says: "CP6: initial measurement" (0x08000000). The last successful calibration has been performed at 25 %-vol.

The initial measurement in this case was successful.

The sensor is still running on its prior standard calibration until a valid calibration value has been assigned to this initial measurement values.

2.7.4.2.2 Product calibration: Assignment

Calibration status after invalid assignment:

Command: Calibration status CP6		Modbus address: 5318		Length: 6	Type: 3	Read
Parameter:	Status	Unit	Value			
Format:	Hex	Hex	Float			
Value:	0x0A000000	0x00000010	25			

Figure 2.7.4.2.2.1: Example to read the calibration status of CP6 after having performed a valid initial measurement at CP6 and an invalid assignment.

The status says: "CP6: out of range" (0x02000000) and "CP6: initial measurement" (0x08000000). The last successful calibration has been performed at 25 %-vol

The initial measurement in this case is still valid and available for further assignment of a product calibration value. The here performed assignment was **not** successful. The sensor remains running on its prior standard calibration.

Calibration status after valid assignment:

Command: Calibration status CP6		Modbus address: 5318		Length: 6	Type: 3	Read
Parameter:	Status	Unit	Value			
Format:	Hex	Hex	Float			
Value:	0x14000000	0x00000010	30			

Figure 2.7.4.2.2.2: Example to read the calibration status of CP6 after having performed an initial measurement at CP6 and a valid assignment to 30 %-vol.

The status says: "CP6: active" (0x04000000) and "CP6: assigned" (0x10000000). The last successful calibration corresponding to the here performed assignment has been performed at 30 %-vol.

The here performed assignment was successful. The sensor is running using a valid product calibration.

2.7.4.2.3 Product calibration: Cancel

Calibration status after cancelling an active product calibration:

Command: Calibration status CP6		Modbus address: 5318		Length: 6	Type: 3	Read
Parameter:	Status	Unit	Value			
Format:	Hex	Hex	Float			
Value:	0x00000000	0x00000010	30			

Figure 2.7.4.2.3.1: Example to read the calibration status of CP6 after having performed a cancel command at CP6.

The status reports no messages. The last successful calibration at CP6 has been performed at 30 %-vol.

The sensor is running on a valid standard calibration and no product calibration is stored.

2.7.4.2.4 Product calibration: Restore standard calibration

Calibration status after restoring a standard calibration from an active product calibration:

Command: Calibration status CP6		Modbus address: 5318		Length: 6	Type: 3	Read
Parameter:	Status	Unit	Value			
Format:	Hex	Hex	Float			
Value:	0x10000000	0x00000010	30			

Figure 2.7.4.2.4.1: Example to read the calibration status of CP6 after having restored the standard calibration from an active product calibration (CP6).

The status says: "CP6 assigned" (0x10000000). The last successful calibration at CP6 has been performed at 30 %-vol.

The sensor is running on a valid standard calibration but a valid product calibration is still available in the sensor.

2.7.4.2.5 Product calibration: Restore product calibration

Calibration status after restoring an available product calibration from an active standard calibration:

Command: Calibration status CP6		Modbus address: 5318		Length: 6	Type: 3	Read
Parameter:	Status	Unit	Value			
Format:	Hex	Hex	Float			
Value:	0x14000000	0x00000010	30			

Figure 2.7.4.2.5.1: Example to read the calibration status of CP6 after having restored an available product calibration (CP6) from an active standard calibration (CP1 / CP2).

The status says: "CP6: active" (0x04000000) and "CP6: assigned" (0x10000000). The last successful calibration corresponding to the here performed assignment has been performed at 30 %-vol.

The sensor is running on a valid product calibration again.

624388/04 page 63 / 86

2.7.5 Currently active Calibration Parameters part 1

In registers 5164 (CP1), 5196 (CP2) and 5324 (CP6) the currently active calibration parameters part 1 are stored. These registers contain the values for temperature, number of calibrations and operating hour upon calibration.

Start register	Number of	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Modbus function	Read access	Write access
	registers					code		
5164	8	Unit of temperature for CP1 (bitwise defined)	Value of temperature of CP1	Number of calibrations at CP1	Operating hour for CP1	3, 4	U/A/S	none
5196	8	Unit of temperature for CP2 (bitwise defined)	Value of temperature of CP2	Number of calibrations at CP2	Operating hour for CP2	3, 4	U/A/S	none
5324	8	Unit of temperature for CP6 (bitwise defined)	Value of temperature of CP6	Number of calibrations at CP6	Operating hour for CP6	3, 4	U/A/S	none

Figure 2.7.5.1: Definition of register 5164 for CP1, 5196 for CP2 and 5324 for CP6.

Command: Calibration CP1 values		Modbus address:	5164	Length: 8	Type: 3	Read
Parameter:	Unit of temperature	Temperature	emperature Number of cali		Operating hour	
Format:	Hex	Float	Decim	nal	Float	
Value:	0x00000004	22.05521	6		73.78	

Figure 2.7.5.2: Example to read the calibration values for CP1. The physical unit is °C (0x00000004), the temperature is 22.05521 °C, the number of calibrations at CP1 is 6 and the operating hour is 73.78 h.

Command: C	Calibration CP2 values	Modbus address:	5196	Length: 8	Type: 3	Read
Parameter:	Unit of temperature	Temperature	Numbe	r of cali	Operating h	nour
Format:	Hex	Float	Decima	al	Float	
Value:	0x00000004	26.40778	31		135.49	

Figure 2.7.5.3: Example to read the calibration values for CP2. The physical unit is °C (0x00000004), the temperature is 26.40778 °C, the number of calibrations at CP1 is 31 and the operating hour is 135.49 h.

Command: Calibration CP6 values		Modbus address: 5324 Length:		Length: 8	Type: 3	Read
Parameter:	Unit of temperature	Temperature	Number of cali		Operating hour	
Format:	Hex	Float	Decimal		Float	
Value:	0x00000004	29.93368	9		102.81	

Figure 2.7.5.4: Example to read the calibration values 1 for CP6. The physical unit is °C (0x00000004), the temperature is 29.93368 (°C), the number of calibrations at CP1 is 9 and the operating hour is 102.81 (h).

624388/04 page 64 / 86

2.7.6 Currently active Calibration Parameters part 2

In registers 5172 (CP1), 5204 (CP2) and 5332 (CP6) the current calibration parameters part 2 are stored. These registers contain the values for atmospheric pressure and salinity.

Start	Number	Reg1 /	Reg3 /	Reg5 /	Reg7 /	Modbus	Read	Write
register	of	Reg2	Reg4	Reg6	Reg8	function	access	access
	registers					code		
5172	8	Unit of	Value of	Unit of	Value of	3, 4	U/A/S	none
		pressure	pressure	salinity of	salinity of			
		for CP1	of CP1	CP1	CP1			
		(bitwise		(bitwise				
		defined)		defined)				
5204	8	Unit of	Value of	Unit of	Value of	3, 4	U/A/S	none
		pressure	pressure	salinity of	salinity of			
		for CP2	of CP2	CP2	CP2			
		(bitwise		(bitwise				
		defined)		defined)				
5332	8	Unit of	Value of	Unit of	Value of	3, 4	U/A/S	none
		pressure	pressure	salinity of	salinity of			
		for CP6	of CP6	CP6	CP6			
		(bitwise		(bitwise				
		defined)		defined)				

Figure 2.7.6.1: Definition of register 5172 for CP1, 5204 for CP2 and 5332 for CP6.

Command: C	alibration CP1 values	2 Modbus address:	5172 Length: 8	Type: 3 Read
Parameter:	Unit of pressure	Pressure	Unit of salinity	Salinity
Format:	Hex	Float	Hex	Float
Value:	0x800000	1013	0x400	10

Figure 2.7.6.2: Example to read the calibration values 2 for CP1. The physical unit is mbar (0x800000), the pressure is 1013 (mbar), the unit is mS/cm (0x400) and the salinity is 10 (mS/cm).

Command: C	Command: Calibration CP2 values 2 Modbus address: 5204 Length: 8 Type: 3					
Parameter:	Unit of pressure	Pressure	Unit of salinity	Salinity		
Format:	Hex	Float	Hex	Float		
Value:	0x800000	1013	0x400	10		

Figure 2.7.6.3: Example to read the calibration values 2 for CP2. The physical unit is mbar (0x800000), the pressure is 1013 (mbar), the unit is mS/cm (0x400) and the salinity is 10 (mS/cm).

Command: C	Calibration CP6 values	2 Modbus address:	5204 Length: 8	Type: 3 Read
Parameter:	Unit of pressure	Pressure	Unit of salinity	Salinity
Format:	Hex	Float	Hex	Float
Value:	0x800000	1013	0x400	0

Figure 2.7.6.4: Example to read the calibration values 2 for CP6. The physical unit is mbar (0x800000), the pressure is 1013 (mbar), the unit is mS/cm (0x400) and the salinity is 0 (mS/cm).

HAMILT®N

624388/04 page 65 / 86

2.7.7 Currently active Calibration Parameters part 3

In register 5520, 5528 and 5560 the oxygen value of the used calibration standards, the electrical current of the EDO Arc sensor and the temperature upon calibration are stored.

Start	Number	Reg1 /	Reg3 /	Reg5 /	Reg7 /	Modbus	Read	Write
register	of	Reg2	Reg4	Reg6	Reg8	function	access	access
	registers					code		
5520	8	DO value of calibration standard at CP1 [mbar]	Electrical current at CP1 [nA]	Temp at CP1 [K]	free	3, 4	A/S	none
5528	8	DO value of calibration standard at CP2 [mbar]	Electrical current at CP2 [nA]	Temp at CP2 [K]	free	3, 4	A/S	none
5560	8	DO value of product at CP6 [mbar]	Electrical current at CP6 [nA]	Temp at CP6 [K]	free	3, 4	A/S	none

Figure 2.7.7.1: Definition of register 5520, 5528 and 5560.

Command: A	Act calibration CP1	Modbus addres	s: 5520	Length: 8	Type: 3	Read
Parameter:	DO CP1 [mbar]	Current CP1 [nA]	Temp CP	1 [K]	Pressure Cl	P1 [mbar]
Format:	Float	Float	Float		Float	
Value:	0	0.02	297.1378		1013	

Figure 2.7.7.2: Example to read the actual calibration values of CP1.

Command: A	ct calibration CP2	Modbus addres	s: 5528	Length: 8	Type: 3	Read
Parameter:	DO CP2 [mbar]	Current CP2 [nA]	Temp C	P2 [K]	Pressure CF	P1 [mbar]
Format:	Float	Float	Float		Float	
Value:	204.99	58.47	299.56		1013	

Figure 2.7.7.3: Example to read the actual calibration values of CP2.

Command: Act calibration CP6		Modbus address: 5560		Length: 8	Type: 3	Read
Parameter:	DO CP6 [mbar]	Current CP6 [nA]	Temp CF	P6 [K]	Pressure Cl	P1 [mbar]
Format:	Float	Float	Float		Float	
Value:	205.02	58.47	299.57		1013	

Figure 2.7.7.4: Example to read the actual calibration values of CP6.

624388/04 page 66 / 86

2.7.8 Currently active Calibration Parameters part 4

For standard calibration (CP1 / CP2) register 5448 documents current at zero oxygen and compensated slope:

Start	Number	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Modbus	Read	Write
register	of	(Float)	(Float)	(Float)	function	access	access
	registers				code		
5448	6	Current at	Compensated	Reference	3, 4	U/A/S	none
		zero oxygen	Slope	temperature [K]			
		[nA]	[nA]				

Figure 2.7.8.1: Definition of register 5448.

Command: Calculated cali values		Modbus address: 54	48 Leng	th: 6	Type: 3	Read
Parameter:	Current at	Compensated slope	Ref temp			
	zero oxygen [nA]	[nA]	[K]			
Format:	Float	Float	Float			
Value:	0.02	56.17	298.15			

Figure 2.7.8.2: Example to read register 5448: Current at zero oxygen is 0.02 nA; compensated slope is 56.17 nA; reference temperature is 298.15 K (=25°C)

For standard calibration (CP1 / CP2) register 5480 documents limits of current at zero oxygen and compensated slope:

Start	Number	Reg1 /	Reg3 /	Reg5 /	Reg7 /	Modbus	Read	Write
register	of	Reg2	Reg4	Reg6	Reg8	function	access	access
	registers					code		
5480	8	Min value of current at zero oxygen [nA]	Max value of current at zero oxygen [nA]	Min value of com- pensated slope [nA]	Max value of com- pensated slope [nA]	3, 4	U/A/S	none

Figure 2.7.8.3: Definition of register 5480.

Command: L	imits of calc. cali value	s Modbus address: 54	180 Length: 8	Type: 3 Read
Parameter:	Min value of current	Max value of current	Min value of	Max value of
	at zero oxygen [nA]	at zero oxygen [nA]	compensated slope	compensated slope
			[nA]	[nA]
Format:	Float	Float	Float	Float
Value:	-0.5	0.5	30	95

Figure 2.7.8.4: Example to read register 5480: Current at zero oxygen is allowed from -0.5 to +0.5 nA; compensated slope is allowed from 30 to 95 nA.

HAMILT®N

624388/04 page 67 / 86

2.7.9 Currently active Calibration Parameters part 5

In register 5182, 5214 and 5342 the system time of the calibration is stored. The system time is explained in chapter 2.8.2.

Note: for CP6, the system time is set during the action "initial measurement".

Start	Number of	Reg1 / Reg2	Modbus function	Read	Write
register	registers		code	access	access
5182	2	System Time CP1	3, 4	U/A/S	none
5214	2	System Time CP2	3, 4	U/A/S	none
5342	2	System Time CP6	3, 4	U/A/S	none

Figure 2.7.9.1: Definition of register 5182 for CP1, 5214 for CP2 and 5342 for CP6.

Command: System Time CP1		Modbus address:	Modbus address: 5182		Type: 3	Read
Parameter:	System Time CP1					
Format:	u-int					
Value:	1334102400					

Figure 2.7.9.2: Example to read the system time of CP1. The sensor is calibrated at 1334102400 which is equivalent to the 1st of April 2012 00:00 according to the base date of January 1st 1970.

Command: System Time CP2		Modbus address:	5214	Length: 2	Type: 3	Read
Parameter:	System Time CP2					
Format:	u-int					
Value:	1333540800					

Figure 2.7.9.3: Example to read the system time of CP2. CP2 has been performed on the 4th of April 2012 at 12:00.

Command: System Time CP6		Modbus address:	5342	Length: 2	Type: 3	Read
Parameter:	System Time CP6					
Format:	u-int					
Value:	1334131200					

Figure 2.7.9.4: Example to read the system time of CP6. The initial measurement of the product calibration has been performed on April 11th 2012 at 8:00.

HAMILT®N

624388/04 page 68 / 86

2.7.10 Special Commands for Calibration with VisiCal

The VisiCal calibration device allows calibration of EDO Arc Sensors at CP1 or CP2. The EDO Arc Sensor's associated calibration parameters for CP1 and CP2 are those predefined and stored in corresponding registers of the sensor.

Register 5164 defines the oxygen value for CP1 and register 5196 defines the oxygen value for CP2, which are only valid for use with VisiCal. The same calibration limits for the oxygen value are used as for standard calibration at CP1 and CP2 (register 5152 and 5184 respectively).

Attention:

- It is not possible to perform a product calibration using VisiCal.
- Physical unit is fixed to %-vol by definition.

Start register	Number of registers	Reg1 / Reg2	Modbus function code	Read access	Write access
5180	2	Oxygen value at CP1 (default: 0 %-vol)	3, 4, 16	U/A/S	S
5212	2	Oxygen value at CP2 (default: 20.95 %-vol)	3, 4, 16	U/A/S	S

Figure 2.7.10.1: Definition of register 5180 for CP1 and 5212 for CP2.

Command: VisiCal CP1		Modbus address: 5	180	Length: 2	Type: 3	Read
Parameter:	Value [%-vol]					
Format:	Float					
Value:	0					

Figure 2.7.10.2: Example to read the oxygen value valid for CP1. It is 0 %-vol. Accordingly, the next time when a calibration is started using VisiCal at LOW, a calibration with manual selection is performed, using the calibration standard at zero oxygen.

Command: VisiCal CP2		Modbus address: 5	212	Length: 2	Type: 16	Write
Parameter:	Value [%-vol]					
Format:	Float					
Value:	20.95					

Figure 2.7.10.3: Example to set the oxygen value valid for CP2.

Command: VisiCal CP2		Modbus address: 5212	Length: 2	Type: 3	Read
Parameter:	Value [%-vol]				
Format:	Float				
Value:	20.95				

Figure 2.7.10.4: Example to read the oxygen value valid for CP2. It is 20.95 %-vol. Accordingly, the next time when a calibration is started using VisiCal at HIGH, a calibration with manual selection is performed, using the calibration standard at 20.95 %-vol. The operator has to make sure that within the selected set of calibration standards - a standard at 20.95 %-vol is selected for manual selection.

HAMILT®N

624388/04 page 69 / 86

2.7.11 Calibration Standards

2.7.11.1 Available Sets of Calibration Standards

EDO Arc Sensors can store and operate six different sets of calibration standards each having max 12 calibration standards. Before calibration the operator has to select one defined set to operate with. Default setting is the DO Standards set of calibration standards.

The operator can change the selection of sets at any time, without compromising prior calibration data at CP1 / CP2.

In register 9472 the available sets of calibration standards are defined.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(Bit, see Figure 2.7.11.1.2)	function code	access	access
9472	2	Available calibration standard sets	3, 4	U/A/S	none

Figure 2.7.11.1.1: Definition of register 9472.

Bit #	Hex value	Description	Definition
0 (LSB)	0x0000001	Set 1	DO Standards
1	0x00000002	Set 2	not available
2	0x00000004	Set 3	not available
3	0x00000008	Set 4	not available
4	0x00000010	Set 5	not available
5	0x00000020	Set 6	not available

Figure 2.7.11.1.2: Definition of available sets of calibration standards.

Command: Available cali sets		Modbus address: 947	'2 Length: 2	Type: 3	Read
Parameter:	Calibration sets				
Format:	Hex				
Value:	0x00000001				

Figure 2.7.11.1.3: Example to read the available calibration sets: Set 1 (0x00000001), in total 0x00000001.

In register 9474 the selected set of calibration standards is defined.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(Bit, see Figure 2.7.11.1.2)	function code	access	access
9474	2	Selected set of calibration standard	3, 4	U/A/S	S

Figure 2.7.11.1.4: Definition of register 9474. Only one bit can be set.

Command: S	selected set of cal stand.	Modbus address: 9474	Length: 2	Type: 3	Read
Parameter:	Calibration set				
Format:	Hex				
Value:	0x00000001				

Figure 2.7.11.1.5: Example to read the selected set of calibration standards. Set 1 (DO Standards) (0x00000001) is active.

Command: Select set of cal stand.		Modbus address: 9474	Length: 2	Type: 16	Write
Parameter:	Calibration set				
Format:	Hex				
Value:	0x02				

Figure 2.7.11.1.6: Example to set the calibration standard set to calibration set number 2 (currently not used) (0x02).

624388/04 page 70 / 86

2.7.11.2 Definitions for Individual Sets of Calibration Standards

Once the operator has selected a set of calibration standards (register 9474) the register 9504 and following give all information on the selected set of calibration standards.

Start	Number of	Reg1 to Reg8	Modbus	Read	Write
register	registers	(16 ASCII characters)	function code	access	access
9504	8	Manufacturer of the selected set	3, 4	U/A/S	none
9512	8	Info 1 of the selected set	3, 4	U/A/S	none
9520	8	Info 2 of the selected set	3, 4	U/A/S	none

Figure 2.7.11.2.1: Definition of registers 9504 to 9520.

Command: manufacturer of set		Modbus address: 9504	Length: 8	Type: 3	Read
Parameter:	Text				
Format:	Character				
Value:	DO Standards				

Figure 2.7.11.2.2: Example to read the description (in this case, the set 0x01 is selected)

Within one set of calibration standards, a maximum of 12 calibration standards are available. In the following registers, the details of each calibration standard are given:

Start register	Description
9536	Nominal value and tolerance of calibration standard 1
9552	Nominal value and tolerance of calibration standard 2
9568	Nominal value and tolerance of calibration standard 3
9584	Nominal value and tolerance of calibration standard 4
9600	Nominal value and tolerance of calibration standard 5
9616	Nominal value and tolerance of calibration standard 6
9632	Nominal value and tolerance of calibration standard 7
9648	Nominal value and tolerance of calibration standard 8
9664	Nominal value and tolerance of calibration standard 9
9680	Nominal value and tolerance of calibration standard 10
9696	Nominal value and tolerance of calibration standard 11
9712	Nominal value and tolerance of calibration standard 12

Figure 2.7.11.2.3: Definition for the register range from 9536 until 9720.

624388/04 page 71 / 86

Start	Number	Reg1 /	Reg3 /	Reg5 /	Reg7 /	Modbus	Read	Write
register	of	Reg2	Reg4	Reg6	Reg8	function	access	access
	registers	(Float)	(Float)	(Float)	(Float)	code		
9536,	8	Calibr.	Tolerance	Calibr.	Tolerance	3, 4	U/A/S	none
9552,		standard	of nominal	standard	of nominal			
		nominal	value	nominal	value			
		value	(manual)	value	(automatic)			
		(manual)	(±) [%-vol]	(automatic)	(±) [%-vol]			
		[%-vol]	(=) [/0 10.]	[%-vol]	(=) [/0 10.]			

Figure 2.7.11.2.4: Definition for registers 9536 until 9720.

Command: Read standard 1		Modbus address:	9536 Length: 8	Type: 3 Rea	ad
Parameter:	Nominal value	Tolerance	Nominal value	Tolerance	
	(manual)	(manual)	(automatic)	(automatic)	
	[%-vol]	(±) [%-vol]	[%-vol]	(±) [%-vol]	
Format:	Float	Float	Float	Float	
Value:	20.95	20	20.95	5	

Figure 2.7.11.2.5: Example to read the values for calibration standard 1 within the "DO Standards" set. This standard has a nominal value of 20.95 %-vol.

During standard calibration with automatic recognition the sensor accepts a range of oxygen readings between 15.95 and 25.95 %-vol (20.95 \pm 5 %-vol) to be assigned to this standard. Of course, the oxygen reading used for this assignment considers on the currently active current at zero oxygen and compensated slope.

During standard calibration with manual recognition only oxygen values between 0.95 and 40.95 %-vol $(20.95 \pm 20 \% - vol)$ can be assigned to this standard.

Note: The decision, if this standard calibration is valid, is made after calculation of the current at zero oxygen and of the compensated slope. If one of those two parameters is out of limits, the calibration using this standard will be denied.

Note: Make sure that calibration standards selected for automatic calibration do not exhibit overlapping acceptance ranges!

Register 9528 defines for the selected set of calibration standards:

- the available calibration standards for manual selection of the oxygen value
- the available calibration standards for automatic recognition of the oxygen value

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(Bit, see Figure 2.7.11.2.8)	function code	access	access
9528	2	Availability of the 12 cal. standards	3, 4	U/A/S	none

Figure 2.7.11.2.6: Definition of register 9528

Command: A	vailable standards	Modbus address: 9528	Length: 2	Type: 3	Read
Parameter:	Standard fields				
Format:	Hex				
Value:	0x00010001				

Figure 2.7.11.2.7: Example to read the information of register 9528. For the definition of the bits, see Figure 2.7.11.2.8. The value 0x00010001 says that (for the selected set of calibration standards):

- first calibration standard is available for manual calibration
- first calibration standard is available for automatic recognition.

Bit	Hex code	Index of Calibration Standard within the selected set	Calibration type
0 (LSB)	0x00000001	1	manual selection
1	0x00000002	2	manual selection
2	0x00000004	3	manual selection
3	0x00000008	4	manual selection
4	0x00000010	5	manual selection
5	0x00000020	6	manual selection
6	0x00000040	7	manual selection
7	0x00000080	8	manual selection
8	0x00000100	9	manual selection
9	0x00000200	10	manual selection
10	0x00000400	11	manual selection
11	0x00000800	12	manual selection
12-15		not available	
16	0x00010000	1	automatic recognition
17	0x00020000	2	automatic recognition
18	0x00040000	3	automatic recognition
19	0x00080000	4	automatic recognition
20	0x00100000	5	automatic recognition
21	0x00200000	6	automatic recognition
22	0x00400000	7	automatic recognition
23	0x00800000	8	automatic recognition
24	0x01000000	9	automatic recognition
25	0x02000000	10	automatic recognition
26	0x04000000	11	automatic recognition
27	0x08000000	12	automatic recognition
28-31		not available	

Figure 2.7.11.2.8: Availability / Selection for the 12 calibration standards within one given set.

Bit 0-11 define availability of standards 1-12 for manual calibration.

Bit 16-27 define availability of standards 1-12 for automatic recognition

Register 9528: the corresponding calibration standard is available if bit is set

Register 9530: the corresponding calibration standard is selected if bit is set

By means of register 9530, the specialist can define for each available calibration standard if the specific standard is available.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(Bit, see Figure 2.7.11.2.8)	function code	access	access
9530	2	Selected standard fields	3, 4	U/A/S	S

Figure 2.7.11.2.9: Selected calibration standards within one given set.

Command: S	Selected standard fields	Modbus address:	9530	Length: 2	Type: 3	Read
Parameter:	Standard fields					
Format:	Hex					
Value:	0x00010001					

Figure 2.7.11.2.10: Example to read the selected calibration standards. The value 0x00010001 says that:

- first calibration standard is selected for manual selection
- first calibration standard is selected for automatic recognition

Command: S	Selected standard fields	Modbus address: 9530	Length: 2	Type: 16	Write
Parameter:	Standard fields				
Format:	Hex				
Value:	0x0007000F				

Figure 2.7.11.2.11: Example to set the standard fields to 4 calibration standards for manual calibration and calibration standard 1 (0x00010000), 2 (0x00020000) and 3 (0x00040000) for automatic recognition.

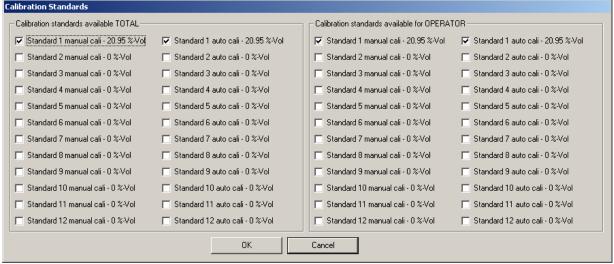


Figure 2.7.11.2.12: Illustration from the Arc Sensor Configurator software tool for registers 9528 and 9530. For this example, the DO Standards set of calibration standard is selected.

- On the left half of the figure, the availability of the calibration standards 1-12 is shown, as defined in register 9528. In the left column, the availability for manual calibration is shown (calibration standard 1). In the right column, the availability for automatic recognition is given (calibration standard 1).
- On the right half of the figure, the individual selection defined by the specialist is shown as read from register 9530. In the left column, the selection for manual selection is shown (calibration standard 1). In the right column the selection for automatic recognition is given (calibration standard 1).

HAMILT®N

2.8 Sensor Status

2.8.1 Temperature Ranges

In registers 4608, 4612 and 4616 three different temperature ranges are defined:

- Operation in this range the sensor will work properly (current output, Modbus communication), except the measurement, which is stopped until the temperature is back in the measurement range. In this case the last value of measurement will be frozen and sent to analog interfaces.
- Measurement in this range the sensor is able to measure.
- Calibration in this range the sensor can be calibrated.

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Modbus function	Read access	Write access
Juguer				code		
4608	4	Operating	Operating	3, 4	U/A/S	none
		temperature min [°C]	temperature max [°C]			
4612	4	Measurement	Measurement	3, 4	U/A/S	none
		temperature min [°C]	temperature max [°C]			
4616	4	Calibration	Calibration	3, 4	U/A/S	none
		temperature min [°C]	temperature max [°C]			

Figure 2.8.1.1: Definition of register 4608, 4612 and 4616.

Command: C	perating T range	Modbus address:	4608	Length: 4	Type: 3	Read
Parameter:	Operating T min	Operating T max				
	[°C]	[°C]				
Format:	Float	Float				
Value:	-20	130				

Figure 2.8.1.2: Example to read the operating temperature values min and max.

Command: Measurement T range		Modbus address:	4612	Length: 4	Type: 3	Read
Parameter:	Measurement T	Measurement T				
	min [°C]	max [°C]				
Format:	Float	Float				
Value:	-20	130				

Figure 2.8.1.3: Example to read the measurement temperature values min and max.

Command: Calibration T range		Modbus address:	4616	Length: 4	Type: 3	Read
Parameter:	Calibration T min	Calibration T max				
	[°C]	[°C]				
Format:	Float	Float				
Value:	5	50				

Figure 2.8.1.4: Example to read the calibration temperature values min and max.

624388/04 page 75 / 86

2.8.2 Operating Hours, Counters and System Time

In register 4676 are stored:

- total operating hours
- operating hours above max measurement temperature (see chapter 2.8.1)
- the operating hours above max operating temperature (see chapter 2.8.1)

In register 4682 are stored:

- number of power ups
- number of watchdog resets
- number of writing cycles to the sensor's flash memory

In register 4688 are stored:

- number of sterilizations in place (SIP) (see chapter 2.8.5)
- number of cleanings in place (CIP) (see chapter 2.8.5)

In register 4692 is stored

number of autoclavings.
 This register has no effect for the sensor and is only for the user to trace the record for himself.

In register 8232 is stored

system time counter.

When the sensor is powered up, the system time is set to 0. A value between 0 and 2³² can be written into this register. From this value, the sensor increments this value every second. We recommend to use as base date the so-called UNIX timestamp (hint: www.epochconverter.com) which starts at 1st of January 1970 GMT. When a calibration is performed the system time value will be copied to the register 5182 for CP1, 5214 for CP2 and 5342 for CP6 (after the action "initial measurement"). With this copied value, the absolute time of calibration can be recovered, even if the sensor has powered down in the meantime. Be sure to update this register if needed after every power up of the sensor.

Start	Number of	Reg1 / Reg2	Reg3 / Reg4	Reg3 / Reg4	Modbus	Read	Write
register	registers				function code	access	access
4676	6	Operating hours [h]	Operating hours above max measurement temperature [h]	Operating hours above max operating temperature [h]	3, 4	U/A/S	none
4682	6	Number of Power ups	Number of Watchdog resets	Number of Writing cycles to flash memory	3, 4	U/A/S	none
4688	4	Number of SIP cycles	Number of CIP cycles	-	3, 4	U/A/S	none
4692	2	No. of autoclavings			3, 4, 16	U/A/S	S
8232	2	System Time Counter			3, 4, 16	U/A/S	S

Figure 2.8.2.1: Definition of register 4676, 4682, 4688 4692 and 8232.

624388/04 page 76 / 86

Command: C	perating hours	Modbus address:	4676 Length: 6	Type: 3	Read
Parameter:	Operating hours [h]	Operating hours	Operating hours		
		above max	above max		
		measurement	operating		
		temperature	temperature		
		[h]	[h]		
Format:	Float	Float	Float		
Value:	168.3667	0	0		

Figure 2.8.2.2: Example to read the total operating hours, the operating hours above the max measurement temperature and the operating hours above the max operating temperature.

Command: P	Command: Power & watchdog Modbus address:		4682 Length: 6	Type: 3	Read
Parameter:	Number of Power	Number of	Number of Writing		
	ups	Watchdog resets	cycles to flash		
			memory		
Format:	Decimal	Decimal	Decimal		·
Value:	34	1	16		

Figure 2.8.2.3: Example to read the number of power ups, the number of watchdog resets and the number of writing cycles to flash memory.

Command: S	IP & CIP	Modbus address:	4688	Length: 4	Type: 3	Read
Parameter:	SIP cycles	CIP cycles				
Format:	Decimal	Decimal				
Value:	0	0				

Figure 2.8.2.4: Example to read the number of SIP cycles and the number of CIP cycles. For the definition of SIP and CIP cycles see chapter 2.8.5.

Command: A	utoclaving	Modbus address:	4692	Length: 2	Type: 3	Read
Parameter:	Autoclavings					
Format:	Decimal					
Value:	7					

Figure 2.8.2.5: Example to read the number of autoclaving cycles.

Command: A	utoclaving	Modbus address:	4692	Length: 2	Type: 16	Write
Parameter:	Autoclavings					
Format:	Decimal					
Value:	14					

Figure 2.8.2.6: Example to write the number of autoclaving cycles. A number of 14 is written to the sensor.

Command: S	System Time	Modbus address: 82	232 Length: 2	Type: 16	Write
Parameter:	System Time				
Format:	Decimal				
Value:	1334137383				

Figure 2.8.2.7: Example to write the system time into the sensor. On the basis of January 1st 1970, this value represents the 11th of April 2012 at 09:43:03.

Command: S	ystem Time	Modbus address: 82	232	Length: 2	Type: 16	Read
Parameter:	System Time					
Format:	Decimal					
Value:	1334150836					

Figure 2.8.2.8: Example to read the system time into the sensor. On the basis of January 1st 1970, this value represents the 11th of April 2012 at 13:27:16.

Accuracy of the system time, if not updated by the operator: The deviation of the system time is less than one minute per 24h.

624388/04 page 77 / 86 **HAMILT®N**

2.8.3 Warnings

A "Warning" is a notification message which still allows further functioning of the system. This message alerts the operator of a possible problem that could lead to uncertain results.

2.8.3.1 Currently Active Warnings

The currently active warnings are stored in register 4736.

Start register	Number of registers	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Modbus function code	Read access	Write access
4736	8	Active warning measure- ment (bitwise defined)	Active warning calibration (bitwise defined)	Active warning interface (bitwise defined)	Active warning hardware (bitwise defined)	3, 4	U/A/S	none

Figure 2.8.3.1.1: Definition of register 4736 (see chapter 2.8.3.3)

Command: Active warning		Modbus address: 4736		gth: 8 Type: 3	Read
Parameter:	W Measurement	W Calibration	W Interface	W Hardware)
Format:	Hex	Hex	Hex	Hex	
Value:	0x00	0x00	0x00	0x00	

Figure 2.8.3.1.2: Example to read the currently active warnings.

2.8.3.2 History of Warnings

The history of warnings is not implemented in EDO Arc Sensors.

2.8.3.3 Definition of Warnings

Bit #	Hex	Description
		not available
30	0x40000000	Polarization timer active

Figure 2.8.3.3.1: Definition of warnings "measurement".

Bit #	Hex	Description
0 (LSB)	0x0001	PMC1 (oxygen) calibration recommended
1	0x0002	PMC1 (oxygen) last calibration not successful

Figure 2.8.3.3.2: Definition of warnings "calibration".

Bit #	Hex	Description
		not available

Figure 2.8.3.3.3: Definition of warnings "interface". None is defined.

Bit #	Hex	Description
		not available

Figure 2.8.3.3.4: Definition of warnings "hardware". None is defined.

2.8.4 Errors

An "Error" message indicates a serious problem of the sensor which does not allow further proper functioning of the sensor. This problem must be solved.

2.8.4.1 Currently Active Errors

The currently active errors are stored in register 4800.

Start	Number	Reg1 /	Reg3 /	Reg5 /	Reg7 /	Modbus	Read	Write
register	of	Reg2	Reg4	Reg6	Reg8	function	access	access
	registers					code		
4800	8	Active error measure- ment (bitwise defined)	Active error calibration (bitwise defined)	Active error interface (bitwise defined)	Active error hardware (bitwise defined)	3, 4	U/A/S	none

Figure 2.8.4.1.1: Definition of register 4800 (see chapter 2.8.4.3)

Command: Active errors		Modbus address: 4800 Length: 8		Type: 3	Read
Parameter:	E Measurement	E Calibration	E Interface	E Hardware	
Format:	Hex	Hex	Hex	Hex	
Value:	0x00	0x00	0x00	0x00	

Figure 2.8.4.1.2: Example to read the currently active errors.

2.8.4.2 History of Errors

The history of errors is not implemented in EDO Arc Sensors.

2.8.4.3 Definition of Errors

Bit #	Hex	Description
0	0x0000001	DO reading failure (this error occurs, when any other error is active)
1	0x0000002	p(O2) exceeds air pressure
		not available
20	0x0100000	Cathode impedance too high
21	0x0200000	Cathode impedance too low
		not available
25	0x2000000	Temperature sensor defective

Figure 2.8.4.3.1: Definition of errors "measurement".

Bit #	Hex	Description
1	0x0000002	Sensor failure (Quality value < 15%)

Figure 2.8.4.3.2: Definition of errors "calibration".

Bit #	Hex	Description
		not available

Figure 2.8.4.3.3: Definition of errors "interface". None is defined.

Bit #	Hex	Description
		not available
24	0x1000000	Internal communication error (between front-end and user-end)

Figure 2.8.4.3.4: Definition of errors "hardware".

2.8.5 Reading Definition of SIP and CIP

EDO Arc Sensor are counting special cleaning events such as sterilizations or cleaning cycles by means of tracking typical temperature profiles (see chapter 2.8.2).

Register 4988 defines a typical temperature profile for SIP (sterilization in place) and register 4996 for CIP (cleaning in place). For the explanation the following values are given:

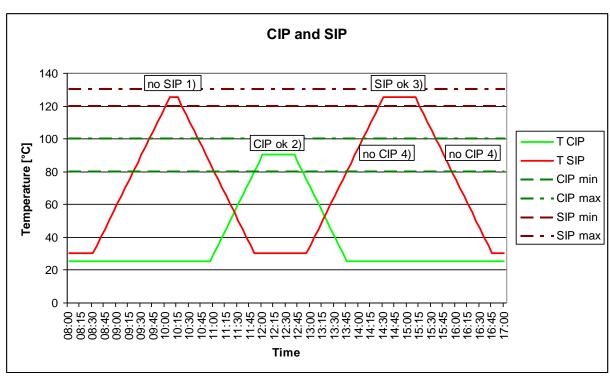


Figure 2.8.5.1: Definition of CIP and SIP cycles.

- 1) no SIP-cycle counted, because time too short <30 minutes.
- 2) CIP-cycle counted, because time >30 minutes and in CIP temperature range.
- 3) SIP-cycle counted, because time >30 minutes and in SIP temperature range.
- 4) no CIP-cycle counted, because of reaching the SIP-min limit.

Start register	Number of	Reg1 / Reg2	Reg3 / Reg4	Reg5 / Reg6	Reg7 / Reg8	Modbus function	Read access	Write access
4988	registers 8	SIP Tempera- ture min [°C]	SIP Tempera- ture max [°C]	SIP Process time min [min]	Empty	3, 4	U/A/S	S
4996	8	CIP Tempera- ture min [°C]	CIP Tempera- -ture max [°C]	CIP Process time min [min]	Empty	3, 4	U/A/S	S

Figure 2.8.5.2: Definition of register 4988 and 4996.

624388/04 page 81 / 86

Command: SIP definition		Modbus address:	4988 Length: 8	Type: 16 Write
Parameter:	T min [°C]	T max [°C]	Time min [min]	Empty
Format:	Float	Float	Float	Float
Value:	120	130	30	0

Figure 2.8.5.3: Example to write the SIP definitions.

Command: SIP definition		Modbus address:	4988 Length: 8	Type: 3 Read
Parameter:	T min [°C]	T max [°C]	Time min [min]	Empty
Format:	Float	Float	Float	Float
Value:	120	130	30	0

Figure 2.8.5.4: Example to read the SIP definitions.

Command: C	IP definition	Modbus address:	4996 Length: 8	Type: 16 Write
Parameter:	T min [°C]	T max [°C]	Time min [min]	Empty
Format:	Float	Float	Float	Float
Value:	80	100	30	0

Figure 2.8.5.5: Example to write the CIP definitions.

Command: CIP definition		Modbus address:	4996 Length: 8	Type: 3	Read
Parameter:	T min [°C]	T max [°C]	Time min [min]	Empty	
Format:	Float	Float	Float	Float	
Value:	80	100	30	0	

Figure 2.8.5.6: Example to read the CIP definitions.

2.8.6 Reading the Sensor's Quality Indicator

In register 4872 the sensor's quality indicator (0-100%) is given.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers	(Float)	function	access	access
			code		
4872	2	Quality [%]	3, 4	U/A/S	none

Figure 2.8.6.1: Definition of register 4872.

Command: Q	uality indicator	Modbus address: 4	4872	Length: 2	Type: 3	Read
Parameter:	Quality [%]					
Format:	Float					
Value:	100					

Figure 2.8.6.2: Example to read the sensor's quality indicator.

The sensor's quality indicator is influenced by:

- current at zero oxygen
- · compensated slope
- errors

2.9 Sensor Identification and Information

2.9.1 General Information

General information about the sensor is available as shown in the figure below.

Start	Number of	Reg1 to Reg8	Example of content	Modbus	Read	Write
register	registers	(16 ASCII characters)		function	access	access
				code		
1024	8	Userend FW Date	2020-12-14	3, 4	U/A/S	none
1032	8	Userend FW	EDOUM034	3, 4	U/A/S	none
1040	8	Userend BL Date	2013-08-19	3, 4	U/A/S	none
1048	8	Userend BL	BL4UX001	3, 4	U/A/S	none
1056	8	Userend Ref	242480	3, 4	U/A/S	none
1064	8	Userend SN	not available	3, 4	U/A/S	none
1072	8	Userend (space holder)	not available	3, 4	U/A/S	none
1080	8	Userend (space holder)	not available	3, 4	U/A/S	none
1088	8	Frontend FW Date	2010-03-10	3, 4	U/A/S	none
1096	8	Frontend FW	EDOFI011	3, 4	U/A/S	none
1104	8	Frontend BL Date	not available	3, 4	U/A/S	none
1112	8	Frontend BL	not available	3, 4	U/A/S	none
1120	8	Frontend Ref	242816	3, 4	U/A/S	none
1128	8	Frontend SN	not available	3, 4	U/A/S	none
1136	8	Frontend (space holder)	not available	3, 4	U/A/S	none
1144	8	Frontend (space holder)	not available	3, 4	U/A/S	none

Figure 2.9.1.1: Definition of registers containing read-only sensor information.

Command: Userend Firmware		Modbus address:	1032	Length: 8	Type: 3	Read
Parameter:	Text					
Format:	Character					
Value:	EDOUM034					

Figure 2.9.1.2: Example to read register 1032.

2.9.2 Sensor Identification

Start	Number of	Reg1 to Reg8	Example of content	Modbus	Read	Write
register	registers	(16 ASCII characters)		function	access	access
				code		
1280	8	Sensor Ref	243110/00	3, 4	U/A/S	none
1288	8	Sensor name	Oxyferm FDA	3, 4	U/A/S	none
1296	8	Sensor Lot	3214567	3, 4	U/A/S	none
1304	8	Sensor Lot date	22.02.2021	3, 4	U/A/S	none
1312	8	Sensor SN	0001001	3, 4	U/A/S	none
1320	8	Manufacturer part 1	HAMILTON Bonaduz	3, 4	U/A/S	none
1328	8	Manufacturer part 2	AG Switzerland	3, 4	U/A/S	none
1336	8	Sensor type	ARC e. DO Sensor	3, 4	U/A/S	none
1344	8	Power supply	007030V 0150mW	3, 4	U/A/S	none
1352	8	Pressure range	0 4 bar	3, 4	U/A/S	none
1360	8	Sensor ID	243110-0001001	3, 4	U/A/S	none
1368	8	a-length	120	3, 4	U/A/S	none
1376	8	(space holder)	not available	3, 4	U/A/S	none
1384	8	Electrical connection	VP 8.0	3, 4	U/A/S	none
1392	8	Process connection	PG 13.5	3, 4	U/A/S	none
1400	8	Sensing material	FDA Membrane	3, 4	U/A/S	none

Figure 2.9.2.1: Definition of registers containing sensor identification.

HAMILT®N

624388/04 page 83 / 86

Command: Serial number		Modbus address:	1312	Length: 8	Type: 3	Read
Parameter:	Text					
Format:	Character					
Value:	0001001					

Figure 2.9.2.2: Example to read register 1312.

2.9.3 Free User Memory Space

These registers can be used to store any customer specific information in the sensor. There are different registers which can be read by everybody, but only specific operators can write them.

Start	Number	Reg1 to Reg8	Example of content	Modbus	Read	Write
register	of	(16 ASCII characters)		function	access	access
	registers			code		
1536	8	Free user space U/A/S	*FREE_USERSPACE*	3, 4, 16	U/A/S	U/A/S
1544	8	Free user space U/A/S	*FREE_USERSPACE*	3, 4, 16	U/A/S	U/A/S
1552	8	Free user space U/A/S	*FREE_USERSPACE*	3, 4, 16	U/A/S	U/A/S
1560	8	Free user space U/A/S	*FREE_USERSPACE*	3, 4, 16	U/A/S	U/A/S
1568	8	Free user space A/S	*FREE_USERSPACE*	3, 4, 16	U/A/S	A/S
1576	8	Free user space A/S	*FREE_USERSPACE*	3, 4, 16	U/A/S	A/S
1584	8	Free user space A/S	*FREE_USERSPACE*	3, 4, 16	U/A/S	A/S
1592	8	Free user space A/S	*FREE_USERSPACE*	3, 4, 16	U/A/S	A/S
1600	8	Measuring point	243110-0001001	3, 4, 16	U/A/S	S
1608	8	Free user space S	*FREE_USERSPACE*	3, 4, 16	U/A/S	S
1616	8	Free user space S	*FREE_USERSPACE*	3, 4, 16	U/A/S	S
1624	8	Free user space S	*FREE_USERSPACE*	3, 4, 16	U/A/S	S
1632	8	Free user space others	*FREE_USERSPACE*	3, 4	U/A/S	none
1640	8	Free user space others	*FREE_USERSPACE*	3, 4	U/A/S	none
1648	8	Free user space others	*FREE_USERSPACE*	3, 4	U/A/S	none
1656	8	Free user space others	*FREE_USERSPACE*	3, 4	U/A/S	none
1664	8	Free user space others	*FREE_USERSPACE*	3, 4	U/A/S	none
1672	8	Free user space others	*FREE_USERSPACE*	3, 4	U/A/S	none
1680	8	Free user space others	*FREE_USERSPACE*	3, 4	U/A/S	none
1688	8	Free user space others	*FREE_USERSPACE*	3, 4	U/A/S	none
1696	8	Free user space others	*FREE_USERSPACE*	3, 4	U/A/S	none
1704	8	Free user space others	*FREE_USERSPACE*	3, 4	U/A/S	none
1712	8	Free user space others	*FREE_USERSPACE*	3, 4	U/A/S	none
1720	8	Free user space others	*FREE_USERSPACE*	3, 4	U/A/S	none
1728	8	Free user space others	*FREE_USERSPACE*	3, 4	U/A/S	none
1736	8	Free user space others	*FREE_USERSPACE*	3, 4	U/A/S	none
1744	8	Free user space others	*FREE_USERSPACE*	3, 4	U/A/S	none
1752	8	Free user space others	*FREE_USERSPACE*	3, 4	U/A/S	none

Figure 2.9.3.1: Definition of registers containing user information.

An important register is 1600, as it is the description of the measuring point. The information of this register is displayed on the Arc View Handheld in order to identify individual sensors.

Attention:

The Free User Memory Space is located in a memory which allows in total max 10'000 write operations.

624388/04 page 84 / 86

Command: Ir	nfo user	Modbus address: 1	568	Length: 8	Type: 16	Write
Parameter:	Text					
Format:	Character					
Value:	Hello World					

Figure 2.9.3.2: Example to write 16 ASCII characters to register 1568 with operator A or S.

Command: Info user		Modbus address:	1568	Length: 8	Type: 3	Read
Parameter:	Text					
Format:	Character					
Value:	Hello World					

Figure 2.9.3.3: Example to read the register 1568 (written in Figure 2.9.3.1).

2.10 System Commands

2.10.1 Recall Sensor's Factory Settings

Using register 8192 you can recall the sensor manufacturer values (interfaces, calibration data and passwords), except the SIP and CIP data which remain unchanged. By sending the recall value "911", all configuration values will be set to default.

Start	Number of	Reg1 / Reg2	Modbus	Read	Write
register	registers		function code	access	access
8192	2	Recall by value 911	16	none	S

Figure 2.10.1.1: Definition of register 8192.

Command: Recall		Modbus address: 81	192	Length: 2	Type: 16	Write
Parameter:	Recall					
Format:	Decimal					
Value:	911					

Figure 2.10.1.2: Example to write the restore command.

3 Abbreviations

AO	Analog Output Interface
CP	Calibration Point

ECS Electrochemical Sensor Interface
PMC Primary Measurement Channel
SMC Secondary Measurement Channel

HAMILT®N

Hamilton Bonaduz AG Via Crusch 8 CH-7402 Bonaduz Switzerland

Tel. +41 58 610 10 10 Fax +41 58 610 00 10

contact.pa.ch@hamilton.ch www.hamiltoncompany.com 22 Februrary 2021 Manual Ref: 624388/04

